Pottery is a unique art that involves creating items out of clay. It creates a variety of clay and ceramic products, including as flowerpots, water and grain storage jars, by distilling rice spirits. Almost all pottery manufacture is done in the conventional manner, which uses more energy and emits hazardous emissions. This project primarily focuses on experimental performance analysis, calculating temperature distribution, fuel required per batch, pottery production per batch, maximum temperature reading, flame temperature, and energy audit for an existing furnace and thermal analysis of pottery furnace giving optimum design for future construction and modification of existing furnace. Energy calculation shows that specific fuel consumption of different furnaces in Thimi varies from 0.98MJ/kg to 2.4MJ/kg. Experimental data are collected and validated by transient thermal analysis using ANSYS.
A great deal of work is put into decreasing the fuel consumption of automotive vehicles, which may be accomplished by reducing the bulk of the vehicles. One component that may be explored is the leaf spring, which is extensively utilized in many sorts of cars, including electric ones. For the leaf spring, four distinct materials are considered: standard steel, Epoxy/E-Glass UD composite, Epoxy/E-Glass Wet composite, and Epoxy/S-Glass UD composite. The FEA study executed with the help of the ANSYS finite element code. Firstly, the 3-D model of the leaf spring with different thickness varying from 15mm to 65mm is designed using SolidWorks software which is then imported to the ANSYS software for the static analysis. Along with this, the finite element analysis under full load on 3-D composite multi leaf spring model is executed using ANSYS 2020 R1 by taking three different materials and then the result for the different static behaviour of the leaf spring are compared for all the materials assigned. In this paper we describe design and analysis of composite leaf spring. The leaf spring model used for this purpose is a rear leaf spring used in MAHINDRA “MODEL-COMMANDER 650 DI”. When compared to traditional steel, the mass of hybrid composite material is 62% lower. Hybrid composite materials have 36% lower equivalent (Von-Mises) stress than steel. Utlimately, the hybrid composite material may be employed as a leaf spring, decreasing the total weight of automobiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.