Electric load forecasting plays an important role in the planning and operation of the power system for high productivity in any institution of learning. A short-term electrical energy forecast for Gidan Kwano campus, Federal University of Technology Minna, Nigeria was carried out using GMDH-type neural network and the result was compared to that of regression analysis. GMDH-type neural network was used to train and test weekly energy consumed in the campus from September 2010 to December 2014. The neural network was trained using quadratic neural function. Root mean square error (RMSE) and mean absolute percentage error (MAPE) were used as performance indices to test the accuracy of the forecast. The neural network model gave a root mean square error (RMSE) of 0.1189, a mean absolute percentage error (MAPE) of 0.0922 and a correlation (R) value of 0.8995 while the regression analysis method gave a standard error of 10968.1 and a correlation (R) value of 0.1137. Results obtained show the efficacy of the GMDH-type neural network model in forecasting over the regression analysis method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.