We present some results on the existence, uniqueness and Hyers-Ulam stability to the solution of an implicit coupled system of impulsive fractional differential equations having Hadamard type fractional derivative. Using a fixed point theorem of Kransnoselskii's type, the existence and uniqueness results are obtained. Along these lines, different kinds of Hyers-Ulam stability are discussed. An example is given to illustrate the main theorems.
This work is committed to establishing the assumptions essential for at least one and unique solution of a switched coupled system of impulsive fractional differential equations having derivative of Hadamard type. Using Krasnoselskii’s fixed point theorem, the existence, as well as uniqueness results, is obtained. Along with this, different kinds of Hyers–Ulam stability are discussed. For supporting the theory, example is provided.
In this article, we make analysis of the implicit fractional differential equations involving integral boundary conditions associated with Stieltjes integral and its corresponding coupled system. We use some sufficient conditions to achieve the existence and uniqueness results for the given problems by applying the Banach contraction principle, Schaefer’s fixed point theorem, and Leray–Schauder result of the cone type. Moreover, we present different kinds of stability such as Hyers–Ulam stability, generalized Hyers–Ulam stability, Hyers–Ulam–Rassias stability, and generalized Hyers–Ulam–Rassias stability by using the classical technique of functional analysis. At the end, the results are verified with the help of examples.
In this article, we make analysis of the implicit q‐fractional differential equations involving integral boundary conditions associated with Stieltjes integral and its corresponding coupled system. We are using some sufficient conditions to achieve the existence and uniqueness results for the given problems by applying the Banach contraction principle, Schaefer's fixed point theorem, and Leray–Schauder result of cone type. Moreover, we present different kinds of stability such as Hyers–Ulam stability, generalized Hyers–Ulam stability, Hyers–Ulam–Rassias stability, and generalized Hyers–Ulam–Rassias stability using the classical technique of functional analysis. At the end, the results are verified with the help of examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.