BackgroundStress hyperglycaemia (SHG) is a common complication in sepsis associated with poor outcome. Chemerin is an adipocytokine associated with inflammation and impaired glucose homeostasis in metabolic diseases such as type 2 diabetes (T2D). We aimed to investigate how alterations of circulating chemerin levels and corresponding visceral adipose tissue (VAT) expression are linked to glucose metabolism and prognosis in sepsis.MethodsClinical data and tissue samples were taken from a cross-sectional study including control, T2D and sepsis patients, all undergoing laparotomy. A second independent patient cohort of patients with sepsis was included to evaluate associations with prognosis. This was complemented by a murine model of peritoneal infection and a high-fat diet. We analysed circulating chemerin by enzyme-linked immunosorbent assay and VAT messenger RNA (mRNA) expression by real-time polymerase chain reaction.ResultsCirculating chemerin was increased in sepsis 1.69-fold compared with controls (p = 0.012) and 1.47-fold compared with T2D (p = 0.03). Otherwise, chemerin VAT mRNA expression was decreased in patients with sepsis (p = 0.006) and in septic diabetic animals (p = 0.009). Circulating chemerin correlated significantly with intra-operative glucose (r = 0.662; p = 0.01) and in trend with fasting glucose (r = 0.528; p = 0.052). After adjusting for body mass index or haemoglobin A1c, chemerin correlated in trend with insulin resistance evaluated using the logarithmised homeostasis model assessment of insulin resistance (r = 0.539, p = 0.071; r = 0.553, p = 0.062). Chemerin was positively associated with Acute Physiology and Chronic Health Evaluation II score in patients with sepsis (p = 0.036) and with clinical severity in septic mice (p = 0.031). In an independent study population, we confirmed association of chemerin with glucose levels in multivariate linear regression analysis (β = 0.556, p = 0.013). In patients with sepsis with SHG, non-survivors had significantly lower chemerin levels than survivors (0.38-fold, p = 0.006), while in patients without SHG, non-survivors had higher chemerin levels, not reaching significance (1.64-fold, p = 0.089). No difference was apparent in patients with pre-existing T2D (p = 0.44).ConclusionsWe show, for the first time to our knowledge, that chemerin is increased in sepsis and that it associates with impaired glucose metabolism and survival in these patients. It could be further evaluated as a biomarker to stratify mortality risk of patients with SHG.Electronic supplementary materialThe online version of this article (doi:10.1186/s13054-016-1209-5) contains supplementary material, which is available to authorized users.
We provide a descriptive characterization of the unfolded protein response (UPR) in skeletal muscle of human patients with peritoneal sepsis and a sepsis model of C57BL/6J mice. Patients undergoing open surgery were included in a cross-sectional study and blood and skeletal muscle samples were taken. Key markers of the UPR and cluster of differentiation 68 (CD68) as surrogate of inflammatory injury were evaluated by real-time PCR and histochemical staining. CD68 mRNA increased with sepsis in skeletal muscle of patients and animals (p < 0.05). Mainly the inositol-requiring enzyme 1α branch of the UPR was upregulated as shown by elevated X-box binding-protein 1 (XBP1u) and its spliced isoform (XBP1s) mRNA (p < 0.05, respectively). Increased expression of Gadd34 indicated activation of PRKR-Like Endoplasmic Reticulum Kinase (PERK) branch of the UPR, and was only observed in mice (p < 0.001) but not human study subjects. Selected cell death signals were upregulated in human and murine muscle, demonstrated by increased bcl-2 associated X protein mRNA and TUNEL staining (p < 0.05). In conclusion we provide a first characterization of the UPR in skeletal muscle in human sepsis.
Sepsis is defined by life-threatening organ dysfunction mediated by the host’s response to infection. This can result in septic dyslipidemia, which is involved in the neutralization of pathogen-related lipids. Knowledge of the regulatory mechanisms of septic dyslipidemia is incomplete. The cytokine betatrophin/Angiopoietin-like protein 8 (ANGPTL8) plays a role in the regulation of triacylglyceride metabolism, though its function in septic dyslipidemia remains unknown. Sixty-six patients were enrolled in a cross-sectional study. Circulating concentrations and adipose tissue (AT) mRNA expression of betatrophin/ANGPTL8 were studied in patients suffering from peritoneal sepsis. Insulin-resistant individuals and subjects without metabolic derangement/systemic inflammation were enrolled as controls. All underwent open abdominal surgery. Circulating betatrophin/ANGPTL8 was analyzed by an enzyme-linked immunosorbent assay and AT mRNA expression levels were assessed by real-time PCR. Standard laboratory analyses including lipid electrophoresis were evaluated. Sepsis patients showed pronounced septic dyslipidemia (p < 0.05 for all major lipid classes). Despite comparable betatrophin/ANGPTL8 mRNA expression in AT (p = 0.24), we found significantly increased circulating betatrophin/ANGPTL8 with septic dyslipidemia (p = 0.009). Expression levels of betatrophin/ANGPTL8 in AT correlated with circulating concentrations in both control groups (r = 0.61; p = 0.008 and r = 0.43; p = 0.034), while this association was undetectable in sepsis. After stratification, betatrophin/ANGPTL8 remained associated with hypertriacylglyceridemia (p < 0.05).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.