BackgroundMaternal nutrition in pregnancy has a crucial impact on the development of the fetus. Dietary trans fatty acids (tFA) are known to have adverse health effects, especially during pregnancy. However, the distribution of tFA produced via partial hydrogenation of vegetable oils (mainly elaidic acid; t9) differs compared to ruminant-derived tFA (mainly vaccenic acid; t11). Recent findings indicate that they may have different impact on human health.Therefore, in this study, plasma and erythrocytes of mother-child pairs (n = 55) were sampled to investigate the distribution of tFA, including individual trans C18:1 fatty acids and conjugated linoleic acids (CLA) in fetal related to maternal lipids; with additional consideration of maternal dairy fat intake.ResultsPortion of t9 and t11, but also of c9,t11 CLA was higher in maternal than in fetal blood lipids. The portion of t9 in maternal and fetal lipids differed only slightly. In contrast, the portion of fetal t11 was only half of that in maternal blood. This led to a fetal t9/t11-index in plasma and erythrocytes being twice as high compared to the maternal values. A high dairy fat intake resulted in elevated portions of t11 and its Δ9-desaturation product c9,t11 CLA in maternal blood. In contrast, in the respective fetal blood lipids only c9,t11 CLA, but not t11 was increased. Nevertheless, a positive association between maternal and fetal plasma exists for both t11 and c9,t11 CLA. Furthermore, in contrast to t9, t11 was not negatively associated with n-3 LC-PUFA in fetal blood lipids.ConclusionsFetal blood fatty acid composition essentially depends on and is altered by the maternal fatty acid supply. However, in addition to dietary factors, other aspects also contribute to the individual fatty acid distribution (oxidation, conversion, incorporation). The lower portion of fetal t11 compared to maternal t11, possibly results from Δ9-desaturation to c9,t11 CLA and/or oxidation. Based on the fatty acid distribution, it can be concluded that t11 differs from t9 regarding its metabolism and their impact on fetal LC-PUFA.
It has recently been reported that the increased prevalence in childhood allergy may be linked to deviations in fetal immune development. One reason may be impaired nutrient supply. Hence, a well-differentiated placenta together with an optimal fetal nutrition via the mother are important prerequisites for the establishment of a functional immune system with normal immune responses. Fatty acids and their derivatives can influence both the early immune development and immune maturation by regulating numerous metabolic processes and the gene expression of important proteins such as enzymes and cytokines. The present review summarises the impact of nutritional fatty acids on the development of the immune system as well as the fetal development. It describes the mechanisms of action of PUFA, trans fatty acids and conjugated linoleic acids in programming the fetus with regard to its risk of acquiring atopic diseases in childhood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.