Endothelial dysfunction contributes to the increased cardiovascular risk that accompanies CKD. We hypothesized that the soluble VEGF receptor 1 (sFlt-1), a VEGF antagonist, plays a role in endothelial dysfunction and decreased angiogenesis in CKD. We enrolled 130 patients with CKD stages 3 to 5 and 56 age-and gender-matched control patients. Plasma sFlt-1 levels were higher in patients with CKD and, after multivariate regression analyses, exclusively associated with renal function and levels of vWF, a marker of endothelial dysfunction. Compared with serum from control patients, both recombinant sFlt-1 and serum from patients with CKD had antiangiogenic activity in the chick chorioallantoic membrane (CAM) assay, induced endothelial cell apoptosis in vitro, and decreased nitric oxide generation in two different endothelial cell lines. Pretreating the sera with an antibody against sFlt-1 abrogated all of these effects. Furthermore, we observed increased sFlt1 levels in 5/6-nephrectomized rats compared with sham-operated animals. Finally, using real-time PCR and ELISA, we identified monocytes as a possible source of increased sFlt-1 in patients with CKD. Our findings show that excess sFlt-1 associates with endothelial dysfunction in CKD and suggest that increased sFlt-1 may predict cardiovascular risk in CKD.
Chronic kidney disease with hyperphosphatemia is associated with accelerated atherosclerosis and endothelial dysfunction. However, the contribution of high serum phosphate levels to endothelial injury is incompletely understood. The aim of this work was to evaluate the responses of endothelial cells to elevated levels of extracellular phosphate in vitro. High phosphate in concentrations similar to those observed in uremia-associated hyperphosphatemia (>2.5 mM) induced apoptosis in two endothelial cell lines (EAhy926 cells and GM-7373 cells). This effect was enhanced when cells were incubated for 24 h in the presence of 2.8 mM calcium instead of 1.8 mM. By treating cells with 0.5 or 1.0 mM phosphonoformic acid, an inhibitor of the phosphate transporter, death was completely prevented. The process of phosphate-induced apoptosis was further characterized by increased oxidative stress, as detected by increased ROS generation and disruption of the mitochondrial membrane potential at approximately 2 h after treatment, followed by caspase activation. These findings show that hyperphosphatemia causes endothelial cell apoptosis, a process that impairs endothelial integrity. Endothelial cell injury induced by high phosphate concentrations may be an initial event leading to vascular complications in patients with chronic kidney disease.
Abstract-Aldosterone has long been known to control water and electrolyte balance by acting on mineralocorticoid receptors in kidney. However, recent studies demonstrated the presence of these receptors in nonclassical locations, including the cardiovascular system. We tested the hypothesis whether endothelial cells respond to aldosterone with changes in cell volume, a measure for ion-mediated water movement across the cell membrane. By means of atomic force microscopy in fluid, we measured volume of adherent human umbilical venous endothelial cells exposed for 72 hours to 10 nmol/L aldosterone. Over this period of time, cells swell by Ϸ18%. Aldosterone-induced swelling is prevented by 100 nmol/L of the mineralocorticoid receptor antagonist spironolactone, added to the primary endothelial cell culture. Aldosterone-treated cells dramatically shrink when 1 mol/L of the diuretic amiloride is applied. Cells deprived of aldosterone do not respond to amiloride. Our conclusions are: (1) aldosterone leads to sustained cell swelling inhibited by administration of spironolactone or the sodium channel blocker amiloride; (2) cells respond to amiloride after aldosterone exposure; (3) renal diuretics act on endothelial cells; and (4) Key Words: endothelium Ⅲ mineralocorticoids T he kidney is known to be the major target for aldosterone, a mineralocorticoid hormone synthesized in the adrenal cortex that acts on electrolyte transport in the distal nephron. 1 However, there is strong evidence that this hormone is also synthesized in heart 2 and blood vessels. 3 At these locations, it is regulated by similar mechanisms comparable to the renin-angiotensin aldosterone system. 4,5 Because of the fact that aldosterone acts on cardiomyocytes, cardiac fibroblasts, and endothelial cells, this hormone plays a major role in the development of heart failure, myocardial fibrosis, and endothelial dysfunction. 6 Moreover, there is much interest in the possibility of the use of aldosterone receptor blockade in patients to diminish pathological effects that can be produced by this hormone. 7 A study applying atomic force microscopy (AFM) on living aortic endothelial cells showed transient cell swelling that occurred over minutes and that was prevented by a high dose of amiloride known to inhibit plasma membrane Na ϩ /H ϩ exchange. 8 Although the underlying mechanism and its physiological relevance were still unclear, attention was placed on data suggesting that endothelial cells not only synthesize aldosterone 3 but also express mineralocorticoid receptors 9 and the epithelial sodium channel. 10 In a recent article, we applied cariporide, a specific Na ϩ /H ϩ exchange inhibitor, to human umbilical venous endothelial cells (HUVECs). 11 To our surprise, we found that the specific Na ϩ /H ϩ exchange inhibitor did not prevent aldosterone-induced cell swelling, whereas, in contrast, a low dose of amiloride known to block plasma membrane sodium channels was most effective. Taken together, these observations indicated that aldosterone triggers the "c...
There is accumulating evidence that mineralocorticoids not only act on kidney but also on the cardiovascular system. We investigated the response of human umbilical venous endothelial cells (HUVECs) to aldosterone at a time scale of 20 minutes in absence and presence of the aldosterone antagonist spironolactone or other transport inhibitors. We applied atomic force microscopy (AFM), which measures cell volume and volume shifts between cytosol and cell nucleus. We observed an immediate cell volume increase (about 10%) approximately 1 min after addition of aldosterone (0.1 micromol/l), approaching a maximum (about 18%) 10 min after aldosterone treatment. Cell volume returned to normal 20 min after hormone exposure. Spironolactone (1 micromol/l) or amiloride (1 micromol/l) prevented the late aldosterone-induced volume changes but not the immediate change observed 1 min after hormone exposure. AFM revealed nuclear swelling 5 min after aldosterone addition, followed by nuclear shrinkage 15 min later. The Na(+)/H(+) exchange blocker cariporide (10 micromol/l) was ineffective. We conclude: (i). Aldosterone induces immediate (1 min) swelling independently of plasma membrane Na(+) channels and intracellular mineralocorticoid receptors followed by late mineralocorticoid receptor- and Na(+)-channel-dependent swelling. (ii). Intracellular macromolecule shifts cause the changes in cell volume. (iii). Both amiloride and spironolactone may be useful for medical applications to prevent aldosterone-induced vasculopathies.
Hyperphosphatemia is associated with increased cardiovascular risk in patients with renal disease and in healthy individuals. Here we tested whether high phosphate has a role in the pathophysiology of cardiovascular events by interfering with endothelial function, thereby impairing microvascular function and angiogenesis. Protein expression analysis found downregulation of annexin II in human coronary artery endothelial cells, an effect associated with exacerbated shedding of annexin II-positive microparticles by the cells exposed to high phosphate media. EAhy926 endothelial cells exposed to sera from hyperphosphatemic patients also display decreased annexin II, suggesting a negative correlation between serum phosphate and annexin II expression. By using endothelial cell-based assays in vitro and the chicken chorioallantoic membrane assay in vivo, we found that angiogenesis, vessel wall morphology, endothelial cell migration, capillary tube formation, and endothelial survival were impaired in a hyperphosphatemic milieu. Blockade of membrane-bound extracellular annexin II with a specific antibody mimicked the effects of high phosphate. In addition, high phosphate stiffened endothelial cells in vitro and in rats in vivo. Thus, our results link phosphate and adverse clinical outcomes involving the endothelium in both healthy individuals and patients with renal disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.