While low concentrations of S(+) ketamine allow an ischemia-induced increase in the number of new neurons, high S(+) ketamine concentrations block the post-ischemic increase in newly generated neurons. This effect is irrespective of the extent of other histopathological damage and in line with studies showing that NMDA receptor antagonists like MK-801 inhibit neurogenesis after cerebral ischemia.
Background: Postischemic endogenous neurogenesis can be dose-dependently modulated by volatile anesthetics. The intravenous anesthetic propofol is used during operations with a risk of cerebral ischemia, such as neurosurgery, cardiac surgery, and vascular surgery. The effects of propofol on neurogenesis are unknown and, therefore, the object of this study.Methods: Eighty male Sprague-Dawley rats were randomly assigned to treatment groups with propofol administration for 3 h: 36 mg · kg ؊1 · h ؊1 propofol with or without cerebral
These data indicate that histopathological damage depends on the severity of the ischemic insult and that forebrain ischemia activates generation of new neurons. A mild ischemic challenge appears to be a more potent neurogenic stimulus than severe ischemia. The new neurons survive at least 28 days. This may relate to delayed histopathological and functional recovery after cerebral ischemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.