Bronchiolar epithelial cells are the prime targets for influenza A virus infection. It still remains to be clarified which signals are generated from these cells to initiate an immune response. Among chemokines, viral infection of primary lung epithelial cells triggered exclusively the release of CXCL8/interleukin-8 (IL-8), which contrasts with our previous observation that influenza A virus induced in monocytes the expression of mononuclear-leukocyte-attracting chemokines and even suppressed the production of neutrophil-attracting chemokines. Therefore, we speculated that it may be advantageous for respiratory epithelial cells to release primarily neutrophil-attracting CXCL8/IL-8 since neutrophils rapidly remove necrotic debris and are the first line of defense against bacterial superinfections. This concept has also been supported by our finding that influenza A virus infection led to necrosis of lung epithelial cells. This is in striking contrast to previous studies where influenza A virus infection induced apoptosis in monocytes and epithelial cells from origins other than the lung. Thus, the cell type instead of the virus determines which death pathway will be followed. In addition to the release of CXCL8/IL-8, we obtained a massive release of macrophage migration inhibitory factor (MIF) from virus-infected lung cells. However, whereas the CXCL8/IL-8 secretion was accompanied by induced gene activation, the transcription rate of MIF remained unchanged during the infection course and the virusinduced MIF release was predominantly a discharge from intracellular stores, suggesting that MIF is passively released upon cell death. Despite virus induced necrosis, the passively liberated MIF remained bioactive. Considering the well-established immunostimulatory effects of MIF on different leukocyte subsets, is its very likely that enhanced levels of MIF may contribute to the host immune response during the acute phase of influenza A virus infection in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.