The thermoregulation behaviour of the codling moth, Cydia pomonella, is investigated in temperature gradient experiments with larvae feeding within apples, and with mature larvae searching for cocooning sites. Feeding larvae appear to prefer the apple hemisphere with a higher temperature (i.e. they build larger cavities in the radiated, warmer part of the fruit). The proportion of larval cavities in the warmer hemisphere is positively related to increasing apple temperature on that side, as well as to the temperature difference between the warm and the cool fruit hemisphere. The mechanism in feeding larvae can be termed as cryptic basking because, during microhabitat selection, the caterpillars exploit temperature differences that are caused explicitly by incident solar radiation. Fifth-instar larvae in search of cocooning sites show no temperature preference within the large gradient offered (9-29 C), with no difference between males and females. During larval development, the insect changes its thermoregulation behaviour in response to a possible shift in benefits of an elevated body temperature with respect to environmental conditions. Both the thermoregulation behaviour and such a shift of behavioural response should be respected when simulating body temperatures of the species.
Abstract. The thermoregulation behaviour of the adult codling moth, Cydia pomonella, is investigated in the laboratory using temperature gradient experiments. Unmated males and females are tested at dawn when moths typically move to resting sites. Mated females are tested during oviposition over a complete diurnal cycle. Temperature strongly affects microhabitat selection in adult moths. Unmated males and females prefer to rest at the low‐temperature ends of temperature gradients between 15 and 32 °C. Relative humidity does not influence the thermal response in unmated females, whereas males show a less distinct temperature selection under high humidity. By contrast to unmated moths, ovipositing females prove to be highly thermophilous (i.e. they deposit the highest proportions of their eggs in the zones of highest temperatures of gradients between 15 and 36 °C). This striking discrepancy in thermal response of females between their premating and oviposition period is likely to reflect an adaptation to different selection pressures from the thermal environment. Unmated moths may benefit from low temperatures by a longer lifespan and crypsis within the tree canopy, whereas the choice of warmer oviposition sites by mated females will favour a faster development of eggs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.