Background: Synovial sarcoma (SS) is a malignant soft tissue tumor of mesenchymal origin that frequently occurs in young adults. Translocation of the SYT gene on chromosome 18 to the SSX genes on chromosome X leads to the formation of oncogenic fusion genes, which lead to initiation and proliferation of tumor cells. The detection and quantification of circulating tumor DNA (ctDNA) can serve as a non-invasive method for diagnostics of local or distant tumor recurrence, which could improve survival rates due to early detection. Methods: We developed a subtype-specific targeted next-generation sequencing (NGS) approach specifically targeting SS t(X;18)(p11;q11), which fuses SS18 (SYT) in chromosome 18 to SSX1 or SSX2 in chromosome x, and recurrent point mutations. In addition, patient-specific panels were designed from tumor exome sequencing. Both approaches were used to quantify ctDNA in patients’ plasma. Results: The subtype-specific assay allowed detection of somatic mutations from 25/25 tumors with a mean of 1.68 targetable mutations. The minimal limit of detection was determined at a variant allele frequency of 0.05%. Analysis of 29 plasma samples from 15 tumor patients identified breakpoint ctDNA in 6 patients (sensitivity: 40%, specificity 100%). The addition of more mutations further increased assay sensitivity. Quantification of ctDNA in plasma samples (n = 11) from one patient collected over 3 years, with a patient-specific panel based on tumor exome sequencing, correlated with the clinical course, response to treatment and tumor volume. Conclusions: Targeted NGS allows for highly sensitive tumor profiling and non-invasive detection of ctDNA in SS patients, enabling non-invasive monitoring of tumor dynamics.
Soft tissue sarcomas (STS) are rare tumors of mesenchymal origin with high mortality. After curative resection, about one third of patients suffer from distant metastases. Tumor follow-up only covers a portion of recurrences and is associated with high cost and radiation burden. For metastasized STS, only limited inferences can be drawn from imaging data regarding therapy response. To date there are no established and evidence-based diagnostic biomarkers for STS due to their rarity and diversity. In a proof-of-concept study, circulating tumor DNA (ctDNA) was quantified in (n = 25) plasma samples obtained from (n = 3) patients with complex karyotype STS collected over three years. Genotyping of tumor tissue was performed by exome sequencing. Patient-individual mini-panels for targeted next-generation sequencing were designed encompassing up to 30 mutated regions of interest. Circulating free DNA (cfDNA) was purified from plasma and ctDNA quantified therein. ctDNA values were correlated with clinical parameters. ctDNA concentrations correlated with the tumor burden. In case of full remission, no ctDNA was detectable. Patients with a recurrence at a later stage showed low levels of ctDNA during clinical remission, indicating minimal residual disease. In active disease (primary tumor or metastatic disease), ctDNA was highly elevated. We observed direct response to treatment, with a ctDNA decline after tumor resections, radiotherapy, and chemotherapy. Quantification of ctDNA allows for the early detection of recurrence or metastases and can be used to monitor treatment response in STS. Therapeutic decisions can be made earlier, such as the continuation of a targeted adjuvant therapy or the implementation of extended imaging to detect recurrences. In metastatic disease, therapy can be adjusted promptly in case of no response. These advantages may lead to a survival benefit for patients in the future.
Materials and Methods: During anatomical dissection 45 flexors were taken from fresh cadavers and 40 tendons from preserved cadavers. Tendon diameters were measured at both ends and at midpoint. Strength test was performed on a tearing machine in biomechanics laboratory. Results:We evaluated 40 flexors from preserved cadavers, with mean strength of 44.27 MPa (maximum 94.6 MPa, minimum 18.7 MPa) and 45 flexors from fresh cadavers with mean strength 50.59 MPa (maximum 113.3 MPa, minimum 24.7 MPa). In comparsion the strongest tendon is the superficial flexor of the 5th finger (cross section of 0.98 to 4 mm2, mean strength 69.2). The weakest tendon is the superficial flexor of the 3rd finger (cross section of 7.0 to 15.3 mm2, mean strength 32.4 MPa). Conclusion:The results show wide range of strength of flexors from preserved and fresh cadavers. Mean values that close shows, that more accessible preserved cadavers can be used for future testing. The results have a practical impact in determining the minimum tendon diameter necessary for its function in a given muscle, which can safely withstand the force of its tension and they will also serve to compare the mechanical properties of contracting bands in Dupuytren's contracture with a possible practical impact on the treatment of this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.