The addition of cetuximab to first-line chemotherapy seems to benefit patients with KRAS G13D-mutant tumors. Relative treatment effects were similar to those in patients with KRAS wild-type tumors but with lower absolute values.
Chemotherapeutic drugs eliminate cancer cells by induction of apoptosis. Resistance to chemotherapy is partly due to a decreased apoptosis rate. Here we investigated resistance to anticancer drugs in 9 small cell lung cancer (SCLC) cell lines. Apoptosis was induced by cisplatin, doxorubicin and etoposide and was found to be independent of caspase-8 expression. Since caspase-8 is essential for signal transduction of death receptor-mediated apoptosis, all known death receptor systems are thus not required for drug-induced apoptosis in SCLC. Furthermore, we found that anticancer drugs could activate the mitochondrial pathway of apoptosis without involvement of upstream caspases. Finally, by culturing 3 sensitive cell lines in subtherapeutic concentrations of etoposide, resistant cells were generated that exhibit crossresistance to cisplatin and doxorubicin. Drug resistance was paralleled by strong upregulation of Bcl-2, which diminished apoptosis by inhibiting the loss of the mitochondrial transmembrane potential and the release of cytochrome c. The role of bcl-2 in these processes was supported by bcl-2 transfection and antisense inhibition. These results indicate that Bcl-2 contributes to drug resistance in SCLC, a finding that has profound therapeutic implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.