We present a comprehensive investigation of polymer diffusion in the semidilute regime by fluorescence correlation spectroscopy (FCS) and dynamic light scattering (DLS). Using single-labeled polystyrene chains, FCS leads to the self-diffusion coefficient while DLS gives the cooperative diffusion coefficient for exactly the same molecular weights and concentrations. Using FCS we observe a new fast mode in the semidilute entangled concentration regime beyond the slower mode which is due to self-diffusion. Comparison of FCS data with data obtained by DLS on the same polymers shows that the second mode observed in FCS is identical to the cooperative diffusion coefficient measured with DLS. An in-depth analysis and a comparison with current theoretical models demonstrates that the new cooperative mode observed in FCS is due to the effective long-range interaction of the chains through the transient entanglement network.
We report on a novel lithography-free method for obtaining chemical submicron patterns of macromolecules on flat substrates. The approach is an advancement of the well-known microcontact printing scheme: While for classical microcontact printing lithographically produced masters are needed, we show that controlled wrinkling can serve as an alternative pathway to producing such masters. These can even show submicron periodicities. We expect upscaling to larger areas to be considerably simpler than that for existing techniques, as wrinkling results in a macroscopic deformation process that is not limited in terms of substrate size. Using this approach, we demonstrate successful printing of aqueous solutions of polyelectrolytes and proteins. We study the effectiveness of the stamping process and its limits in terms of periodicities and heights of the stamps' topographical features. We find that critical wavelengths are well below 355 nm and critical amplitudes are below 40 nm and clarify the failure mechanism in this regime. This will permit further optimization of the approach in the future.
We report on the swelling behavior and the corresponding morphological behavior of cylinder-forming polystyrene-b-polybutadiene diblock copolymers, which are confined to several layers of structures. The equilibration of thin films has been done under controlled atmosphere of a nonselective solvent. In situ spectroscopic ellipsometry measurements revealed more than 10% increase of the solvent uptake with decreasing film thickness. With scanning force microscopy of the microphase separated patterns in quenched films, the correlation between the degree of the long-range order of cylinder domains and the degree of the macroscopic swelling has been established. In the case of spontaneously formed micrometer-sized topographic features with discreet film thickness (terraces), the increased solvent uptake by thinner films holds true even for isolated terraces on the mesoscale. The observation of nonhomogeneous swelling of the films on the micrometer scale brings novel insights into the properties of confined soft matter, and suggests new approaches toward the fabrication of polymer-based nanostructured responsive materials.
We determine the mobility of dye-labeled polystyrene molecules in solution by fluorescence correlation spectroscopy (FCS) over a wide range of concentrations and molecular weights (ranging from 3.9 x 10{3} to 1550 x 10{3} g/mol ). In order to obtain absolute values of the diffusion coefficient, which can be compared to diffusion coefficients determined by other methods, the size of the focal volume has been determined by independent experiments and theoretical calculations. All data demonstrate that FCS is uniquely suited to explore polymer dynamics in solution. The mobility of the chains as expressed through the self-diffusion coefficient is significantly slowed down above the overlap concentration c{*}. The dependence of c{*} on molecular weight is well described by the power law c{*} proportional, variant M{w};{1-3nu} ( nu: Flory exponent). A comparison with the data taken from the literature demonstrates that the overlap concentration presents a robust concept that holds for a wide range of molecular weights.
We discuss the manner in which the dynamics of tracer polystyrene chains varies with the concentration of matrix polystyrene chains dissolved in toluene. Using fluorescence correlation spectroscopy and theory, it is shown that the cooperative diffusion coefficient of the matrix polystyrene chains can be measured by fluorescence correlation spectroscopy in the semidilute entangled concentration regime. In addition the self-diffusion coefficient of the tracer polystyrene chains can be detected for arbitrary concentrations. The measured cooperative diffusion coefficient is independent of the molecular weight of the tracer polystyrene chains because it is a characteristic feature of the transient entanglement network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.