Purpose The aim of this paper is mainly to handle the fuzzy uncertainties present in structures appropriately. In general, uncertainties of variables are classified as aleatory and epistemic. The different sources of uncertainties in reinforced concrete structures include the randomness, mathematical models, physical models, environmental factors and gross errors. The effects of imprecise data in reinforced concrete structures are studied here by using fuzzy concepts. The aim of this paper is mainly to handle the uncertainties of variables with unclear boundaries. Design/methodology/approach To achieve the intended objective, the reinforced concrete beam subjected to flexure and shear was designed as per Euro Code (EC2). Then, different design parameters such as corrosion parameters, material properties and empirical expressions of time-dependent material properties were identified through a thorough literature review. Findings The fuzziness of variables was identified, and their membership functions were generated by using the heuristic method and drawn by MATLAB R2018a software. In addition to the identification of fuzziness of variables, the study further extended to design optimization of reinforced concrete structure by using fuzzy relation and fuzzy composition. Originality/value In the design codes of the concrete structure, the concrete grades such as C16/20, C20/25, C25/30, C30/37 and so on are provided and being adopted for design in which the intermediate grades are not considered, but using fuzzy concepts the intermediate grades of concrete can be recognized by their respective degree of membership. In the design of reinforced concrete structure using fuzzy relation and composition methods, the optimum design is considered when the degree of membership tends to unity. In addition to design optimization, the level of structural performance evaluation can also be carried out by using fuzzy concepts.
Purpose Performance of the structure depends on design, construction, environment, utilization and reliability aspects. Other factors can be controlled by adopting proper design and construction techniques, but the environmental factors are difficult to control. Hence, mostly in practice, the environmental factors are not considered in the analysis and design appropriately; however, their impact on the performance of the structures is significant along with the design life. It is in this light that this paper aims to perform the time-dependent performance analysis of reinforced concrete structures majorly considering environmental factors. Design/methodology/approach To achieve the intended objective, a simply supported reinforced concrete beam was designed and detailed as per the Euro Code (EC2). The time-dependent design parameters, corrosion parameters, creep and shrinkage were identified through thorough literature review. The common empirical equations were modified to consider the identified parameters, and finally, the time-dependent performance of reinforced concrete beam was performed. Findings Findings indicate that attention has to be paid to appropriate consideration of the environmental effect on reinforced concrete structures. In that, the time-dependent performance of reinforced concrete beam significantly decreases with time due to corrosion of reinforcement steel, creep and shrinkage. Originality/value However, the Euro code, Ethiopian code and Indian code threat the exposure condition of reinforced concrete by providing corresponding concrete cover that retards the corrosion initiation time but does not eliminate environmental effects. The results of this study clearly indicate that the capacity of reinforced concrete structure degrades with time due to corrosion and creep, whereas the action on the structure due to shrinkage increases. Therefore, appropriate remedial measures have to be taken to control the defects of structures due to the environmental factors to overcome the early failure of the structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.