Tomography produces complex volumetric datasets containing the entire internal structure and density of an object in three dimensions (3D). Interpreting volumetric data requires 3D visualization but needs specialized software distinguishable from more familiar tools used in animation for 3D surface data. This tutorial reviews 3D visualization techniques for volumetric data using the open-source tomviz software package. A suite of tools including two-dimensional (2D) slices, surface contours, and full volume rendering provide quantitative and qualitative analysis of volumetric information. The principles outlined here are applicable to a wide range of 3D tomography techniques and can be applied to volumetric datasets beyond materials characterization.
Abstract-A key trend facing extreme-scale computational science is the widening gap between computational and I/O rates, and the challenge that follows is how to best gain insight from simulation data when it is increasingly impractical to save it to persistent storage for subsequent visual exploration and analysis. One approach to this challenge is centered around the idea of in situ processing, where visualization and analysis processing is performed while data is still resident in memory. This paper examines several key design and performance issues related to the idea of in situ processing at extreme scale on modern platforms: scalability, overhead, performance measurement and analysis, comparison and contrast with a traditional post hoc approach, and interfacing with simulation codes. We illustrate these principles in practice with studies, conducted on large-scale HPC platforms, that include a miniapplication and multiple science application codes, one of which demonstrates in situ methods in use at greater than 1M-way concurrency.
Abstract-The SENSEI generic in situ interface is an API that promotes code portability and reusability. From the simulation view, a developer can instrument their code with the SENSEI API and then make make use of any number of in situ infrastructures. From the method view, a developer can write an in situ method using the SENSEI API, then expect it to run in any number of in situ infrastructures, or be invoked directly from a simulation code, with little or no modification. This paper presents the design principles underlying the SENSEI generic interface, along with some simplified coding examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.