Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. Primary symptoms of PD arise with the loss of dopaminergic (DA) neurons in the Substantia Nigra Pars Compacta, but it affects the hippocampus and cortex also, usually in its later stage. Approximately 15% of PD cases familial with a genetic mutation. Two of the most associated genes with autosomal recessive (AR) early-onset familial PD are PINK1 and PARK2. There is a need for In-vitro studies of these genetic mutations in order to understand the neurophysiological changes in patients' neurons that may contribute to neurodegeneration. In this work, we generated and differentiated DA and hippocampal neurons from iPSCs derived from two patients with a double mutation in their PINK1 and PARK2 (one homozygous and one heterozygous) genes and assessed their neurophysiology compared to two healthy controls. We showed that the synaptic activity of PD neurons generated from patients with the PINK1 and PARK2 mutations is impaired in the hippocampus and dopaminergic neurons. Mutant dopaminergic neurons had enhanced excitatory post-synaptic activity. In addition, DA neurons with the homozygous mutation of PINK1 exhibited more pronounced electrophysiological differences compared to the control neurons. Signaling network analysis of RNA sequencing results revealed that Focal adhesion and ECM receptor pathway were the top 2 upregulated pathways in the mutant PD neurons. These phenotypes are reversed to PD phenotypes of other mutations, suggesting that the interaction of the two mutations may yield different mechanisms of PD.
Autism Spectrum Disorder (ASD) is mainly characterized by social and sensory-motor abnormal and repetitive behavior patterns. Over 1000 genetic variants were reported to be highly penetrant and causative of ASD. Many of these mutations cause comorbidities such as epilepsy and intellectual disabilities (ID). In this study, we measured cortical neurons derived from induced pluripotent stem cells (iPSCs) of patients with four mutations in the genes GRIN2B, SHANK3, UBTF, as well as chromosomal duplication in the 7q11.23 region. Using a whole-cell patch-clamp, we observed that the mutant cortical neurons demonstrated hyperexcitability and early maturation compared to control lines. These changes were characterized by higher sodium current, higher amplitude and rates of excitatory postsynaptic currents (EPSCs), and more evoked action potentials in response to current stimulation in early-stage cell development (3-5 weeks post differentiation). These changes that appeared in all the different mutant lines, together with previously reported data, indicate that an early maturation and hyperexcitability may be a convergent phenotype of ASD cortical neurons.
Autism Spectrum Disorder (ASD) is characterized mainly by social and sensory-motor abnormal and repetitive behavior patterns. Over hundreds of genes and thousands of genetic variants were reported to be highly penetrant and causative of ASD. Many of these mutations cause comorbidities such as epilepsy and intellectual disabilities (ID). In this study, we measured cortical neurons derived from induced pluripotent stem cells (iPSCs) of patients with four mutations in the genes GRIN2B, SHANK3, UBTF, as well as chromosomal duplication in the 7q11.23 region and compared them to neurons derived from a first-degree relative without the mutation. Using a whole-cell patch-clamp, we observed that the mutant cortical neurons demonstrated hyperexcitability and early maturation compared to control lines. These changes were characterized by increased sodium currents, increased amplitude and rate of excitatory postsynaptic currents (EPSCs), and more evoked action potentials in response to current stimulation in early-stage cell development (3–5 weeks post differentiation). These changes that appeared in all the different mutant lines, together with previously reported data, indicate that an early maturation and hyperexcitability may be a convergent phenotype of ASD cortical neurons.
Aim Bipolar disorder (BD) is a mood disorder with a high morbidity and death rate. Lithium (Li), a prominent mood stabilizer, is often used as a first‐line treatment. However, clinical studies have shown that Li is fully effective in roughly 30% of BD patients. Our goal in this study was to use features derived from information theory to improve the prediction of the patient's response to Li as well as develop a diagnostic algorithm for the disorder. Methods We have performed electrophysiological recordings in patient‐derived dentate gyrus (DG) granule neurons (from a total of 9 subjects) for three groups: 3 control individuals, 3 BD patients who respond to Li treatment (LR), and 3 BD patients who do not respond to Li treatment (NR). The recordings were analyzed by the statistical tools of modern information theory. We used a Support Vector Machine (SVM) and Random forest (RF) classifiers with the basic electrophysiological features with additional information theory features. Results Information theory features provided further knowledge about the distribution of the electrophysiological entities and the interactions between the different features, which improved classification schemes. These newly added features significantly improved our ability to distinguish the BD patients from the control individuals (an improvement from 60% to 74% accuracy) and LR from NR patients (an improvement from 81% to 99% accuracy). Conclusion The addition of Information theory‐derived features provides further knowledge about the distribution of the parameters and their interactions, thus significantly improving the ability to discriminate and predict the LRs from the NRs and the patients from the controls.
Parkinson's disease (PD) is a neurodegenerative disease with both genetic and sporadic origins. In this study, we investigated the electrophysiological properties, synaptic activity, and gene expression differences in dopaminergic (DA) neurons derived from induced pluripotent stem cells (iPSCs) of healthy controls, sporadic PD (sPD) patients, and PD patients with GBA1 mutations. Our results demonstrate reduced sodium currents and synaptic activity in DA neurons derived from PD patients with GBA1 mutations, suggesting a potential contribution to PD pathophysiology. We also observed distinct electrophysiological alterations in sPD DA neurons that were dependent on the age of disease onset. RNA sequencing analysis revealed unique dysregulated pathways in early and late-onset sPD neurons, further supporting the notion that molecular mechanisms driving PD may be different between PD patients. In agreement with our previous reports, ECM and focal adhesion genes were the top dysregulated pathways in DA neurons from sPD patients and from patients with GBA1 mutations. Overall, this study gives further confirmation that the convergent functional phenotypes of DA neurons derived from PD patients are synaptic abnormalities, and at the transcriptome level, ECM and focal adhesion pathways are highly involved in PD pathology across multiple PD-associated mutations as well as sPD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.