Bacterial safety of cellular preparations, especially haematopoietic progenitor cells (HPCs), as well as advanced therapy medicinal products (ATMPs) derived from stem cells of various origins, present a challenge for physicians, manufacturers and regulators. The article describes the background and practical issues in this area and illustrates why sterility of these products cannot currently be guaranteed. Advantages and limitations of approaches both for classical sterility testing and for microbiological control using automated culture systems are discussed. The review considers novel approaches for growth-based rapid microbiological control with high sensitivity and faster availability of results, as well as new methods for rapid bacterial detection in cellular preparations enabling meaningful information about product contamination within one to two hours. Generally, however, these direct rapid methods are less sensitive and have greater sampling error compared with the growth-based methods. Opportunities for pyrogen testing of cell therapeutics are also discussed. There is an urgent need for development of novel principles and methods applicable to bacterial safety of cellular therapeutics. We also need a major shift in approach from the traditional view of sterility evaluation (identify anything and everything) to a new thinking about how to find what is clinically relevant within the time frame available for the special clinical circumstances in which these products are used. The review concludes with recommendations for optimization of microbiological control of cellular preparations, focusing on HPCs.
Today, sterility of established parenteral drugs including biologicals, such as plasma derived products, is practically guaranteed. Bacterially contaminated products are extremely rare exceptions owing to the efficiency of the manufacturing processes in the pharmaceutical industry. In contrast, the manufacturing processes of cell based medicinal products or tissue preparations show much less defined conditions. The sterility of source materials cannot be guaranteed in many cases. As a rule, these source materials cannot be sterilised, as it holds true for the final products. Furthermore, the established methods for sterility testing are not applicable for cell preparations. Sterility of a restricted sample does not guarantee sterility of the whole preparation. Thus, small amounts of residual bacteria in the product can be overlooked and can grow up to enormous numbers during storage and shipping of cell based medicinal products. Considering these problems, there are some parallels in the warranty of microbial safety of cellular blood components. Therefore, the experiences collected in transfusion medicine in the past decade can be successfully used in the production of cell based medicinal products. Comparable to the situation regarding cellular blood components, there is a need for new principles in rapid bacteria detection.
Today, sterility of parenteral drugs is practically guaranteed. Well-defined procedures in the pharmaceutical industry enable effective protection against contamination by bacteria and fungi. In contrast, problems regarding microbial safety of advanced therapy medicinal products (ATMPs), especially of cell therapeutics, are at best only partially solved. The latter should be understood as a challenge for manufacturers, regulators, and physicians. Many of the manufacturing principles mentioned above are not applicable in production of cell therapeutics. Sterility of source materials cannot be guaranteed and the hitherto known procedures for sterilization are, as a rule, not feasible. Thus, the sterility of the final product cannot be guaranteed. Considering the extremely short shelf life of many cell therapeutics, sometimes only a few hours, the results from established methods for sterility testing are often available too late. Furthermore, the sterility of a test sample does not indicate sterility of the whole product. In most cases, conventional methods for pyrogen testing are not applicable for ATMPs. This paper demonstrates relevant limitations regarding microbial safety and pyrogenicity. Possibilities to overcome these problems are discussed and some novel solutions are proposed.
Ensuring microbiological safety in advanced-therapy medicinal products is still a big challenge for manufacturers. There are fundamental problems, especially in cell-based medicinal products, regarding sterility of source materials, short shelf-life of final products, and the selection of suitable microbiological methods. Different from classical medicinal products, there is the need to evaluate a large number of possible risks and to calculate the risk-benefit balance. Depending on the source material, the presence of micro-organisms with specific growth requirements has to be considered. They cannot be detected by conventional testing methods, but may replicate after the application of the preparation in the recipient. Mycoplasmas are the primary representatives of these contaminants and specific testing procedures are required. Additionally, depending on the source and processing of the biological material, specific testing methods for mycobacteria and other contaminants should be included. Alternative microbiological methods (e.g. NAT, flow cytometry) should be applied in order to reduce the time to detection and to provide reliable results before application of a preparation, but should be also assessed for their possible use for the detection of conventionally undetectable micro-organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.