Anticipated climate change will alter the temperature and rainfall characteristics of crop growing seasons. This will require genetic improvement of crops for adapting to future climates for higher yields. The CROPGRO model for groundnut was used to evaluate genetic traits of Virginia and Spanish types of groundnut for various climate scenarios of India. The analysis revealed that productivity of groundnut can be increased in current and future climates by adjusting the duration of various life‐cycle phases, especially the seed‐filling to physiological maturity (SD‐PM). Increased maximum leaf photosynthesis rate (AMAX), increased partitioning to reproductive organs (XFRT) and increased individual seed‐fill duration (SFDUR) all contributed to the increase in pod yield in all climates. More determinate pod set (shorter PODUR) was beneficial only in the water deficit environments. The positive effect of increasing specific leaf area (SLA) and leaf size (SIZLF) on pod yield was greater in environments more favourable for plant growth. Increasing reproductive tolerance to high temperature by 2 °C increased pod yield of groundnut in warmer environments, especially where the crop often suffers from drought. Increased adaptive partitioning to roots (ATOP) increased drought resistance of groundnut on high water‐holding capacity soils. Combination of traits had additive effects and pod yield increased substantially. These results indicate that the CROPGRO model can be used to assess the potential of individual or combination of plant traits for guiding breeding of improved groundnut varieties for current and future climates.
Numerous studies have addressed effects of rising atmospheric CO2 concentration on rice biomass production and yield but effects on crop water use are less well understood. Irrigated rice evapotranspiration (ET) is composed of floodwater evaporation and canopy transpiration. Crop coefficient Kc (ET over potential ET, or ETo) is crop specific according to FAO, but may decrease as CO2 concentration rises. A sunlit growth chamber experiment was conducted in the Philippines, exposing 1.44-m2 canopies of IR72 rice to four constant CO2 levels (195, 390, 780 and 1560 ppmv). Crop geometry and management emulated field conditions. In two wet (WS) and two dry (DS) seasons, final aboveground dry weight (agdw) was measured. At 390 ppmv [CO2] (current ambient level), agdw averaged 1744 g m-2, similar to field although solar radiation was only 61% of ambient. Reduction to 195 ppmv [CO2] reduced agdw to 56±5% (SE), increase to 780 ppmv increased agdw to 128±8%, and 1560 ppmv increased agdw to 142±5%. In 2013WS, crop ET was measured by weighing the water extracted daily from the chambers by the air conditioners controlling air humidity. Chamber ETo was calculated according to FAO and empirically corrected via observed pan evaporation in chamber vs. field. For 390 ppmv [CO2], Kc was about 1 during crop establishment but increased to about 3 at flowering. 195 ppmv CO2 reduced Kc, 780 ppmv increased it, but at 1560 ppmv it declined. Whole-season crop water use was 564 mm (195 ppmv), 719 mm (390 ppmv), 928 mm (780 ppmv) and 803 mm (1560 ppmv). With increasing [CO2], crop water use efficiency (WUE) gradually increased from 1.59 g kg-1 (195 ppmv) to 2.88 g kg-1 (1560 ppmv). Transpiration efficiency (TE) measured on flag leaves responded more strongly to [CO2] than WUE. Responses of some morphological traits are also reported. In conclusion, increased CO2 promotes biomass more than water use of irrigated rice, causing increased WUE, but it does not help saving water. Comparability with field conditions is discussed. The results will be used to train crop models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.