Flood frequency analysis is one of the techniques of examination of peak stream flow frequency and magnitude in the field of flood hydrology, flood geomorphology and hydraulic engineering. In the present study, Log Pearson Type III (LP-III) probability distribution has applied for flood series data of four sites on the Mahi River namely Mataji, Paderdi Badi, Wanakbori and Khanpur and of three sites on its tributaries such as Anas at Chakaliya, Som at Rangeli and Jakham at Dhariawad. The annual maximum series data for the record length of 26-51 years have been used for the present study. The time series plots of the data indicate that two largest ever recorded floods were observed in the year 1973 and 2006 on the Mahi River. The estimated discharges of 100 year return period range between 3676 m3/s and 47632 m3/s. The return period of the largest ever recorded flood on the Mahi River at Wankbori (40663 m3/s) is 127-yr. The recurrence interval of mean annual discharges (Qm) is between 2.73-yr and 3.95-yr, whereas, the return period of large floods (Qlf) range from 6.24-yr to 9.33-yr. The magnitude-frequency analysis curves represent the reliable estimates of the high floods. The fitted lines are fairly close to the most of the data points. Therefore, it can be reliably and conveniently used to read the recurrence intervals for a given magnitude and vice versa.
The Upper Krishna Basin in Maharashtra (India) is highly vulnerable to floods. This study aimed to generate a flood susceptibility map for the basin using Frequency Ratio and Statistical Index models of flood analysis. The flood hazard inventory map was created by 370 flood locations in the Upper Krishna Basin and plotted using ArcGIS 10.1 software. The 259 flood locations (70%) were selected randomly as training samples for analysis of the flood models, and for validation purposes, the remaining 111 flood locations (30%) were used. Flood susceptibility analyses were performed based on 12 flood conditioning factors. These were elevation, slope, aspect, curvature, Topographic Wetness Index, Stream Power Index, rainfall, distance from the river, stream density, soil types, land use, and distance from the road. The Statistical Index model revealed that 38% of the area of the Upper Krishna Basin is in the high- to very-high-flood-susceptibility class. The precision of the flood susceptibility map was confirmed using the receiver operating characteristic and the area under the curve value method. The area under the curve showed a 66.89% success rate and a 68% prediction rate for the Frequency Ratio model. However, the Statistical Index model provided an 82.85% success rate and 83.23% prediction rate. The comparative analysis of the Frequency Ratio and Statistical Index models revealed that the Statistical Index model was the most suitable for flood susceptibility analysis and mapping flood-prone areas in the Upper Krishna Basin. The results obtained from this research can be helpful in flood disaster mitigation and hazard preparedness in the Upper Krishna Basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.