cdc28-1N is a conditional allele that has normal G1 (Start) function but confers a mitotic defect. We have isolated seven genes that in high dosage suppress the growth defect of cdc28-1N cells but not of Start-defective cdc28-4 cells. Three of these (CLB1, CLB2, and CLB4) encode proteins strongly homologous to G2-specific B-type cyclins. Another gene, CLB3, was cloned using PCR, CLB1 and CLB2 encode a pair of closely related proteins; CLB3 and CLB4 encode a second pair. Neither CLB1 nor CLB2 is essential; however, disruption of both is lethal and causes a mitotic defect. Furthermore, the double mutant cdc28-1N clb2::LEU2 is nonviable, whereas cdc28-4 clb2::LEU2 is viable, suggesting that the cdc28-1N protein may be defective in its interaction with B-type cyclins. Our results are consistent with CDC28 function being required in both G1 and mitosis. Its mitotic role, we believe, involves interaction with a family of at least four G2-specific cyclins.
It is widely assumed that degradation of mitotic cyclins causes a decrease in mitotic cdc2/CDC28 kinase activity and thereby triggers the metaphase to anaphase transition. Two observations made on the budding yeast Saccharomcyces cerevisiae are inconsistent with this scenario: (i) anaphase occurs in the presence of high levels of kinase in cdc15 mutants and (ii) overproduction of a B-type mitotic cyclin causes arrest not in metaphase as previously reported but in telophase. Kinase destruction is therefore implicated in the exit from mitosis rather than the entry into anaphase. The behaviour of espi mutants shows in addition that kinase destruction can occur in the absence of anaphase completion. The execution of anaphase and the destruction of CDC28 kinase activity therefore appear to take place independently of one another.
The previously described CLB1 and CLB2 genes encode a closely related pair of B-type cyclins. Here we present the sequences of another related pair of B-type cyclin genes, which we term CLB3 and CLB4. Although CLB1 and CLB2 mRNAs rise in abundance at the time of nuclear division, CLB3 and CLB4 are turned on earlier, rising early in S phase and declining near the end of nuclear division. When all possible single and multiple deletion mutants were constructed, some multiple mutations were lethal, whereas all single mutants were viable. All lethal combinations included the clb2 deletion, whereas the clbl clb3 clb4 triple mutant was viable, suggesting a key role for CLB2.
Progression from G2 to M phase in eukaryotes requires activation of a protein kinase composed of p34cdc2/CDC28 associated with G1-specific cyclins. In some organisms the activation of the kinase at the G2/M boundary is due to dephosphorylation of a highly conserved tyrosine residue at position 15 (Y15) of the cdc2 protein. Here we report that in the budding yeast Saccharomyces cerevisiae, p34CDC28 also undergoes cell-cycle regulated dephosphorylation on an equivalent tyrosine residue (Y19). However, in contrast to previous observations in S. pombe, Xenopus and mammalian cells, dephosphorylation of Y19 is not required for the activation of the CDC28/cyclin kinase. Furthermore, mutation of this tyrosine residue does not affect dependence of mitosis on DNA synthesis nor does it abolish G2 arrest induced by DNA damage. Our data imply that regulated phosphorylation of this tyrosine residue is not the 'universal' means by which the onset of mitosis is determined. We propose that there are other unidentified controls that regulate entry into mitosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.