Clinical resistance mechanisms to CDK4/6 inhibitors in HR+ breast cancer have not been clearly defined. Whole exome sequencing of 59 tumors with CDK4/6i exposure revealed multiple candidate resistance mechanisms including RB1 loss, activating alterations in AKT1, RAS, AURKA, CCNE2, ERBB2, and FGFR2, and loss of ER expression. In vitro experiments confirmed that these alterations conferred CDK4/6i resistance. Cancer cells cultured to resistance with CDK4/6i also acquired RB1, KRAS, AURKA, or CCNE2 alterations, which conferred sensitivity to AURKA, ERK, or CHEK1 inhibition. Besides inactivation of RB1, which accounts for ~5% of resistance, seven of these mechanisms have not been previously identified as clinical mediators of resistance to CDK4/6 inhibitors in patients. Three of these-RAS activation, AKT activation, and AURKA activation-have not to our knowledge been previously demonstrated preclinically. Together, these eight mechanisms were present in 80% of resistant tumors profiled and may define therapeutic opportunities in patients.
SignificanceWe identified eight distinct mechanisms of resistance to CDK4/6 inhibitors present in 80% of resistant tumors profiled. Most of these have a therapeutic strategy to overcome or prevent resistance in these tumors. Taken together, these findings have critical implications related to the potential utility of precisionbased approaches to overcome resistance in many patients with HR+ MBC..
AbstractClinical resistance mechanisms to CDK4/6 inhibitors in HR+ breast cancer have not been clearly defined. Whole exome sequencing of 59 tumors with CDK4/6i exposure revealed multiple candidate resistance mechanisms including RB1 loss, activating alterations in AKT1, RAS, AURKA, CCNE2, ERBB2, and FGFR2, and loss of ER expression. In vitro experiments confirmed that these alterations conferred CDK4/6i resistance. Cancer cells cultured to resistance with CDK4/6i also acquired RB1, KRAS, AURKA, or CCNE2 alterations, which conferred sensitivity to AURKA, ERK, or CHEK1 inhibition. Besides inactivation of RB1, which accounts for ∼5% of resistance, seven of these mechanisms have not been previously identified as clinical mediators of resistance to CDK4/6 inhibitors in patients. Three of these—RAS activation, AKT activation, and AURKA activation—have not to our knowledge been previously demonstrated preclinically. Together, these eight mechanisms were present in 80% of resistant tumors profiled and may define therapeutic opportunities in patients.SignificanceWe identified eight distinct mechanisms of resistance to CDK4/6 inhibitors present in 80% of resistant tumors profiled. Most of these have a therapeutic strategy to overcome or prevent resistance in these tumors. Taken together, these findings have critical implications related to the potential utility of precision-based approaches to overcome resistance in many patients with HR+ MBC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.