Inositol hexaphosphate (Ins P6 or "phytic acid") typically accounts for 75 (± 10%) of seed total phosphorus (P). In some cases, genetic blocks in seed Ins P6 accumulation can also alter the distribution or total amount of seed P. In nonmutant barley (Hordeum vulgare L.) caryopses, ~80% of Ins P6 and total P accumulate in the aleurone layer, the outer layer of the endosperm, with the remainder in the germ. In barley low phytic acid 1-1 (Hvlpa1-1) seed, both endosperm Ins P6 and total P are reduced (~45% and ~25%, respectively), but germs are phenotypically wild type. This translates into a net reduction in whole-seed total P of ~15%. Nutrient culture studies demonstrate that the reduction in endosperm total P is not due to a reduction in the uptake of P into the maternal plant. Genetic tests (analyses of testcross and F2 seed) reveal that the Hvlpa1-1 genotype of the filial seed conditions the seed total P reduction; sibling seed in the same head of barley that differ in their Hvlpa1-1 genotype (heterozygous vs. homozygous recessive) differ in their total P (normal vs. reduced, respectively). Therefore, Hvlpa1 functions as a seed-specific or filial determinant of barley endosperm total P.
Phytic acid (PA) is the storage form of phosphorus (P) in seeds and plays an important role in the nutritional quality of food crops. There is little information on the genetics of seed and seedling PA in mungbean [Vigna radiata (L.) Wilczek]. Quantitative trait loci (QTL) were identified for phytic acid P (PAP), total P (TP), and inorganic P (IP) in mungbean seeds and seedlings, and for flowering, maturity and seed weight, in an F2 population developed from a cross between low PAP cultivated mungbean (V1725BG) and high PAP wild mungbean (AusTRCF321925). Seven QTLs were detected for P compounds in seed; two for PAP, four for IP and one for TP. Six QTLs were identified for P compounds in seedling; three for PAP, two for TP and one for IP. Only one QTL co-localized between P compounds in seed and seedling suggesting that low PAP seed and low PAP seedling must be selected for at different QTLs. Seed PAP and TP were positively correlated with days to flowering and maturity, indicating the importance of plant phenology to seed P content.
Phytic acid (PA) is the main storage organic form of phosphorus (P) in seeds of cereals and legumes. It is a strong inhibitor against the absorption of nutrients in monogastric animals. The objective of this study was to determine the variation of total P (TP) in seeds of mungbean germplasm and investigate the inheritance of seed P compound and phytate contents. TP content in seeds of 250 accessions were found to range from 2.34 to 5.75 mg/g. The inheritance was studied in the F 2 population derived from a cross between 2 accessions with the lowest and highest PA contents, viz. V1658BBR and V1141BG. Broad-sense heritability estimates of TP, inorganic P (IP), and phytate P (PhyP) contents were 80.8, 78.6 and 80.7%, respectively. The 9:7 segregation ratio of F 2 population in this study indicated that high TP and PhyP were controlled by dominant alleles at 2 independent loci of major genes showing duplicated recessive epistasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.