The enzymes catalyzing the formation of coenzyme A (CoA) thioesters of benzoate and 2-aminobenzoate were studied in a denitrifying Pseudomonas sp. anaerobically grown with these aromatic acids and nitrate as sole carbon and energy sources. Three different rather specific aromatic acyl-CoA ligases, E1, E2, and E3, were found which catalyze the formation of CoA thioesters of benzoate, fluorobenzoates, and 2-aminobenzoate. ATP is cleaved into AMP and pyrophosphate. The enzymes were purified, their N-terminal amino acid sequences were determined, and their catalytic and molecular properties were studied. Cells anaerobically grown on benzoate and nitrate contain one CoA ligase (AMP forming) for benzoic acid (E1). It is a homodimer of Mr 120,000 which prefers benzoate as a substrate but shows some activity also with 2-aminobenzoate and fluorobenzoates, although with lower Km. Cells anaerobically grown on 2-aminobenzoate and nitrate contain three different CoA ligases for aromatic acids. The first one is identical with benzoate-CoA ligase (E1). The second enzyme is a 2-aminobenzoate-CoA ligase (E2). It is a monomer of Mr 60,000 which prefers 2-aminobenzoate but also activates benzoate, fluorobenzoates and, less effectively, 2-methylbenzoate, with lower affinities to the latter substrates. The enzymes E1 and E2 have similar activity levels; a third minor CoA ligase activity is due to a different 2-aminobenzoate-CoA ligase. The enzyme (E3) is a monomer of Mr, 65,000 which 2-aminobenzoate pathway (U. Altenschmidt, C. Eckerskorn, and G. Fuchs, Eur. J. Biochem. 194:647-653, 1990); apparently, it is not completely repressed under anaerobic conditions and therefore also is induced to a small extent by 2-aminobenzoate under anaerobic growth conditions.
The anaerobic degradation of toluene has been studied with whole cells and by measuring enzyme activities. Cultures of Pseudomonas strain K 172 were grown in mineral medium up to a cell density of 0.5 g of dry cells per liter in fed-batch culture with toluene and nitrate as the sole carbon and energy sources. A molar growth yield of 57 g of cell dry matter formed per mol toluene totally consumed was determined. The mean generation time was 24 h. The redox balance between toluene consumed (oxidation and cell material synthesis) and nitrate consumed (reduction to nitrogen gas and assimilation as NH3) was 77% of expectation if toluene was completely oxidized; this indicated that the major amount of toluene was mineralized to CO2. It was tested whether the initial reaction in anaerobic toluene degradation was a carboxylation or a dehydrogenation (anaerobic hydroxylation); the hypothetical carboxylated or hydroxylated intermediates were tested with whole cells applying the method of simultaneous adaptation; cells pregrown on toluene degraded benzyl alcohol, benzaldehyde, and benzoic acid without lag, 4-hydroxybenzoate and p-cresol with a 90 min lag phase, and phenylacetate after a 200 min lag phase. The cells were not at all adapted to degrade 2-methylbenzoate, 4-methylbenzoate, o-cresol, and m-cresol, nor did these compounds support growth within a few days after inoculation with cells grown on toluene. In extracts of cells anaerobically grown on toluene, benzyl alcohol dehydrogenase, benzaldehyde dehydrogenase, and benzoyl-CoA synthetase (AMP forming) activities were present. The data (1) conclusively show anaerobic growth of a pure culture on toluene; (2) suggest that toluene is anaerobically degraded via benzoyl-CoA; (3) imply that water functions as the source of the hydroxyl group in a toluene methylhydroxylase reaction.
A denitrifying Pseudomonas sp. is able to oxidize aromatic compounds compounds completely to CO2, both aerobically and anaerobically. It is shown that benzoate is aerobically oxidized by a new degradation pathway via benzoyl-coenzyme A (CoA) and 3-hydroxybenzoyl-CoA. The organism grew aerobically with benzoate, 3-hydroxybenzoate, and gentisate; catechol, 2-hydroxybenzoate, and protocatechuate were not used, and 4-hydroxybenzoate was a poor substrate. Mutants were obtained which were not able to utilize benzoate as the sole carbon source aerobically but still used 3-hydroxybenzoate or gentisate. Simultaneous adaptation experiments with whole cells seemingly suggested a sequential induction of enzymes of a benzoate oxidation pathway via 3-hydroxybenzoate and gentisate. Cells grown aerobically with benzoate contained a benzoate-CoA ligase (AMP forming) (0.1 mumol min-1 mg-1) which converted benzoate but not 3-hydroxybenzoate into its CoA thioester. The enzyme of 130 kDa composed of two identical subunits of 56 kDa was purified and characterized. Cells grown aerobically with 3-hydroxybenzoate contained a similarly active CoA ligase for 3-hydroxybenzoate, 3-hydroxybenzoate-CoA ligase (AMP forming). Extracts from cells grown aerobically with benzoate catalyzed a benzoyl-CoA- and flavin adenine dinucleotide-dependent oxidation of NADPH with a specific activity of at least 25 nmol NADPH oxidized min-1 mg of protein-1; NADH and benzoate were not used. This new enzyme, benzoyl-CoA 3-monooxygenase, was specifically induced during aerobic growth with benzoate and converted [U-14C]benzoyl-CoA stoichiometrically to [14C]3-hydroxybenzoyl-CoA.
The initial step of anaerobic 4‐hydroxybenzoate and 3‐hydroxybenzoate degradation was studied in a denitrifying Pseudomonas sp. 4‐Hydroxybenzoate and 3‐hydroxybenzoate are converted into their coenzyme A (CoA) thioesters by two different specific coenzyme A ligases. 4‐Hydroxybenzoate‐CoA ligase (AMP‐forming) was purified 350‐fold. The ligase is active as a monomer of molecular mass 48 kDa, as determined by gel filtration and SDS/PAGE. At a pH optimum of 8.5, the apparent Km values for 4‐hydroxybenzoate, ATP, and coenzyme A are 37 μM, 77 μM, and 125 μM, respectively. The enzyme reacts specifically with 4‐hydroxybenzoate (100%) and 4‐aminobenzoate (30%). Other analogues of benzoate, notably 3‐ or 2‐hydroxybenzoate, are inactive, and 2,4‐dihydroxybenzoate and 2‐hydroxy‐4‐methylbenzoate act as competitive inhibitors (Ki= 1 μM). Polyclonal antibodies were raised and used in immunoblot assays to study the regulation of the expression of 4‐hydroxybenzoate‐CoA ligase. The ligase is synthesized when cells are grown anaerobically with 4‐hydroxybenzoate, phenol, or p‐cresol; phenol and p‐cresol are degraded via 4‐hydroxybenzoate. The enzyme is not present in cells grown aerobically with 4‐hydroyxbenzoate or anaerobically with benzoate or 4‐hydroxyphenylacetate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.