Plastids of diatoms and related algae evolved by secondary endocytobiosis, the uptake of a eukaryotic alga into a eukaryotic host cell and its subsequent reduction into an organelle. As a result diatom plastids are surrounded by four membranes. Protein targeting of nucleus encoded plastid proteins across these membranes depends on N-terminal bipartite presequences consisting of a signal and a transit peptide-like domain. Diatoms and cryptophytes share a conserved amino acid motif of unknown function at the cleavage site of the signal peptides (ASA-FAP), which is particularly important for successful plastid targeting. Screening genomic databases we found that in rare cases the very conserved phenylalanine within the motif may be replaced by tryptophan, tyrosine or leucine. To test such unusual presequences for functionality and to better understand the role of the motif and putative receptor proteins involved in targeting, we constructed presequence:GFP fusion proteins with or without modifications of the ''ASAFAP''-motif and expressed them in the diatom Phaeodactylum tricornutum. In this comprehensive mutational analysis we found that only the aromatic amino acids phenylalanine, tryptophan, tyrosine and the bulky amino acid leucine at the +1 position of the predicted signal peptidase cleavage site allow plastid import, as expected from the sequence comparison of native plastid targeting presequences of P. tricornutum and the cryptophyte Guillardia theta. Deletions within the signal peptide domains also impaired plastid import, showing that the presence of F at the N-terminus of the transit peptide together with a cleavable signal peptide is crucial for plastid import.
Phototrophic chromalveolates possess plastids surrounded by either 3 or 4 membranes, revealing their secondary endosymbiotic origin from an engulfed eukaryotic alga. In cryptophytes, a member of the chromalveolates, the organelle is embedded within a designated region of the host's rough endoplasmic reticulum (RER). Its eukaryotic compartments other than the plastid were reduced to the mere remains of its former cytosol, the periplastid compartment (PPC, PP space), and its nucleus, the nucleomorph, separated from the RER by its former plasma membrane, the periplast membrane (PPM). In the nucleomorph genome of the cryptophyte Guillardia theta, we identified several genes sharing homology with components of the ER-associated degradation (ERAD) machinery of yeast and higher eukaryotes, namely ORF201 and ORF477, homologs of membrane-bound proteins, Der1p (Degradation in the ER protein 1) and the RING-finger ubiquitin ligase Hrd1, and a truncated version of Udf1, a cofactor of Cdc48, a lumenal ATPase. Exemplarily, studies on the Der1-homolog ORF201 showed that this protein partially rescued a yeast deletion mutant, indicating the existence of a functional PPC-specific ERAD-like system in cryptophytes. With the noninvestigated exception of haptophytes a phylogenetically and mechanistically related system is apparently present in all chromalveolates with 4 membrane-bound plastids because amongst others, PPC-specific Derlins (Der1-like proteins), CDC48 and its cofactor Ufd1 were identified in the nuclear genomes of diatoms and apicomplexa. These proteins are equipped with the required topogenic signals to direct them into the periplastid compartment of their secondary symbionts. Based on our findings, we suggest that all chromalveolates with 4 membrane-bound plastids express an ERAD-derived machinery in the PPM of their secondary plastid, coexisting physically and systematically adjacent to the host's own ERAD system. We propose herewith that this system was functionally adapted to mediate transport of nucleus-encoded PPC/plastid preproteins from the RER into the periplastid space.
BackgroundNitrogen, a component of many bio-molecules, is essential for growth and development of all organisms. Most nitrogen exists in the atmosphere, and utilisation of this source is important as a means of avoiding nitrogen starvation. However, the ability to fix atmospheric nitrogen via the nitrogenase enzyme complex is restricted to some bacteria. Eukaryotic organisms are only able to obtain fixed nitrogen through their symbiotic interactions with nitrogen-fixing prokaryotes. These symbioses involve a variety of host organisms, including animals, plants, fungi and protists.ResultsWe have compared the morphological, physiological and molecular characteristics of nitrogen fixing symbiotic associations of bacteria and their diverse hosts. Special features of the interaction, e.g. vertical transmission of symbionts, grade of dependency of partners and physiological modifications have been considered in terms of extent of co-evolution and adaptation. Our findings are that, despite many adaptations enabling a beneficial partnership, most symbioses for molecular nitrogen fixation involve facultative interactions. However, some interactions, among them endosymbioses between cyanobacteria and diatoms, show characteristics that reveal a more obligate status of co-evolution.ConclusionOur review emphasises that molecular nitrogen fixation, a driving force for interactions and co-evolution of different species, is a widespread phenomenon involving many different organisms and ecosystems. The diverse grades of symbioses, ranging from loose associations to highly specific intracellular interactions, might themselves reflect the range of potential evolutionary fates for symbiotic partnerships. These include the extreme evolutionary modifications and adaptations that have accompanied the formation of organelles in eukaryotic cells: plastids and mitochondria. However, age and extensive adaptation of plastids and mitochondria complicate the investigation of processes involved in the transition of symbionts to organelles. Extant lineages of symbiotic associations for nitrogen fixation show diverse grades of adaptation and co-evolution, thereby representing different stages of symbiont-host interaction. In particular cyanobacterial associations with protists, like the Rhopalodia gibba-spheroid body symbiosis, could serve as important model systems for the investigation of the complex mechanisms underlying organelle evolution.
The cryptophyte Guillardia theta harbors a plastid surrounded by four membranes. This turns protein targeting of nucleus-encoded endosymbiont localized proteins into quite a challenge, as the respective precursors have to pass either all four membranes to reach the plastid stroma or only the outermost two membranes to enter the periplastidal compartment. Therefore two sets of nuclear-encoded proteins imported into the endosymbiont can be distinguished and their topogenic signals may serve as good indicators for studying protein targeting and subsequent transport across the outermost membranes of the cryptophyte plastid. We isolated genes encoding enzymes involved in two different biochemical pathways, both of which are predicted to be localized inside the periplastidal compartment, and compared their topogenic signals to those of precursor proteins for the plastid stroma, which are encoded on either the nucleus or the nucleomorph. By this and exemplary in vitro and in vivo analyses of the topogenic signal of one protein localized in the periplastidal compartment, we present new data implicating the mechanism of targeting and transport of proteins to and across the outermost plastid membranes. Furthermore, we demonstrate that one single, but conserved amino acid is the triggering key for the discrimination between nucleus-encoded plastid and periplastidal proteins.
RNA polymerase I terminates transcription of mouse rDNA 565 bp downstream of the 3' end of mature 28S rRNA. This specific termination event can be duplicated in a nuclear extract system. RNA molecules with authentic 3' ends are transcribed from ribosomal minigene constructs provided the templates retain a minimal length of downstream spacer sequences. The nucleotide sequence of the region of transcription termination contains a set of repetitive structural elements consisting of 18 bp conserved nucleotides surrounded by stretches of pyrimidines. Termination in vivo occurs within the first element. This site is preferentially used in vitro at low template concentrations. At increasing DNA concentrations a termination site within the second repetitive element is used. Competition experiments with defined 3'-terminal fragments suggest that transcription termination by RNA polymerase I requires interaction of some factor (or factors) with the repetitive structural elements in the 3' nontranscribed spacer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.