In this paper, we describe an algorithmic framework for the optimal operation of transient gas transport networks consisting of a hierarchical MILP formulation together with a sequential linear programming inspired post-processing routine. Its implementation is part of the KOMPASS decision support system, which is currently used in an industrial setting. Real-world gas transport networks are controlled by operating complex pipeline intersection areas, which comprise multiple compressor units, regulators, and valves. In the following, we introduce the concept of network stations to model them. Thereby, we represent the technical capabilities of a station by hand-tailored artificial arcs and add them to network. Furthermore, we choose from a predefined set of flow directions for each network station and time step, which determines where the gas enters and leaves the station. Additionally, we have to select a supported simple state, which consists of two subsets of artificial arcs: Arcs that must and arcs that cannot be used. The goal is to determine a stable control of the network satisfying all supplies and demands. The pipeline intersections, that are represented by the network stations, were initially built centuries ago. Subsequently, due to updates, changes, and extensions, they evolved into highly complex and involved topologies. To extract their basic properties and to model them using computer-readable and optimizable descriptions took several years of effort. To support the dispatchers in controlling the network, we need to compute a continuously updated list of recommended measures. Our motivation for the model presented here is to make fast decisions on important transient global control parameters, i.e., how to route the flow and where to compress the gas. Detailed continuous and discrete technical control measures realizing them, which take all hardware details into account, are determined in a subsequent step. In this paper, we present computational results from the KOMPASS project using detailed real-world data.
In this paper we present the problem faced by an electricity retailer which searches to determine its forward contracting portfolio and the selling prices for its potential clients. This problem is formulated as a two-stage stochastic program including second-order stochastic dominance constraints. The stochastic dominance theory is used in order to reduce the risk suffering from low profits. The resulting deterministic equivalent problem is a mixed-integer linear program which is solved using commercial branch-and-cut software. Numerical results for a realistic case study are reported and relevant conclusions are drawn.
This article is mainly motivated by the urge to answer two kinds of questions regarding the Bundesliga, which is Germany's primary football (soccer) division having the highest average stadium attendance worldwide: "At any point in the season, what is the lowest final rank a certain team can achieve?" and "At any point in the season, what is the highest final rank a certain team can achieve?". Although we focus on the Bundesliga in particular, the integer programming formulations we introduce to answer these questions can easily be adapted to a variety of other league systems and tournaments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.