For face recognition from video streams speed and accuracy are vital aspects. The first decision whether a preprocessed image region represents a human face or not is often made by a feed-forward neural network (NN), e.g. in the Viisage-FaceFINDER® video surveillance system. We describe the optimisation of such a NN by a hybrid algorithm combining evolutionary multi-objective optimisation (EMO) and gradient-based learning. The evolved solutions perform considerably faster than an expert-designed architecture without loss of accuracy. We compare an EMO and a single objective approach, both with online search strategy adaptation. It turns out that EMO is preferable to the single objective approach in several respects.
In this review, we describe current Machine Learning approaches to hand gesture recognition with depth data from time-of-flight sensors. In particular, we summarise the achievements on a line of research at the Computational Neuroscience laboratory at the Ruhr West University of Applied Sciences. Relating our results to the work of others in this field, we confirm that Convolutional Neural Networks and Long Short-Term Memory yield most reliable results. We investigated several sensor data fusion techniques in a deep learning framework and performed user studies to evaluate our system in practice. During our course of research, we gathered and published our data in a novel benchmark dataset (REHAP), containing over a million unique three-dimensional hand posture samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.