In order to clarify inconsistencies in the literature and to verify assumed ternary solubilities, the phase equilibria in the Y2O3–Al2O3 –SiO2 system at 1600, 1400, and 1300 °C were experimentally determined using x-ray diffraction (XRD), scanning electron microscope with attached energy-dispersive detector system (SEM-EDX), and electron probe microanalyzer (EPMA). Six quasibinary phases were observed: Y4Al2O9 (YAM), YAlO3 (YAP), Y3Al5O12 (YAG), Y2SiO5, Y2Si2O7 (C and D modifications), and ˜3Al2O3· 2SiO2 (mullite). Y4Al2O9 forms an extended ternary solid solution with the formula Y4Al2(1-x)Si2xO9+x (x = 0 2 ˜0.31). The lowest ternary eutectic temperature was determined at 1371 ± 5 °C by high-temperature differential scanning calorimetry (DSC). The results were compared with previous data available for the Y2O3–Al2O3 –SiO2 system and with data for other RE2O3–Al2O3 –SiO2 (RE = rare earth element) systems.
Keywords:Zircon Xenotime Monazite Titanite Laser-induced REE photoluminescence Raman artefact Laser-induced photoluminescence of trivalent rare-earth elements (REEs), which is obtained as analytical artefacts in Raman spectra of selected accessory minerals, was studied. Spectra of natural titanite, monazite-(Ce), xenotime-(Y), and zircon samples from various geological environments were compared with emission spectra of synthetic, flux-grown analogues doped with REEs. The latter is of great importance to identify potentially mistakable bands as either Raman or PL signal, and to assign them to certain REE centres. In the samples investigated, various REE centres are excited selectively using 473, 514, 532, 633, and 785 nm laser excitation. Their assignment was verified by photoluminescence-excitation experiments. Luminescence spectral patterns of zircon and titanite vary in dependence of trace-REE concentrations, hence reflecting geochemical growth conditions. "REE artefacts" in Raman spectra of accessory minerals may be used as fingerprint tool for mineral phaseidentification. The distribution of REE emission-intensities, revealed by hyperspectral mapping, opens up the opportunity to visualise mineral textures, complementary to cathodoluminescence imaging-techniques.
Minamiite has been discredited and renamed natroalunite-2c to show a double unit-cell structure and natroalunite can be designated as natroalunite-1c to show a single unit-cell structure. Kintoreite can be designated as kintoreite-1c to show the same single unit-cell structure, and IMA 1993-039 is a new superstructure of kintoreite and can be designated as kintoreite-2c to show a double unit-cell structure. Beaverite has been renamed beaverite-(Cu). The Zn-bearing beaverite of Sato et al. (2008) has been named “beaverite-(Zn)”, but data for the mineralhave not been approved by the CNMNC. Orpheite has been discredited as P-rich hinsdalite. Proposal 07-D was approved by the CNMNC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.