Product configuration systems are often based on a variability model. The
development of a variability model is a time consuming and error-prone process.
Considering the ongoing development of products, the variability model has to
be adapted frequently. These changes often lead to mistakes, such that some
products cannot be derived from the model anymore, that undesired products are
derivable or that there are contradictions in the variability model. In this
paper, we propose an approach to discover and to explain contradictions in
attributed feature models efficiently in order to assist the developer with the
correction of mistakes. We use extended feature models with attributes and
arithmetic constraints, translate them into a constraint satisfaction problem
and explore those for contradictions. When a contradiction is found, the
constraints are searched for a set of contradicting relations by the
QuickXplain algorithm.Comment: In Proceedings FMSPLE 2015, arXiv:1504.0301
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.