Sensors, and also actuators or external sources such as databases, serve as data sources in order to realise condition monitoring of industrial applications or the acquisition of characteristic parameters like production speed or reject rate. Modern facilities create such a large amount of complex data that a machine operator is unable to comprehend and process the information contained in the data. Thus, information fusion mechanisms gain increasing importance. Besides the management of large amounts of data, further challenges towards the fusion algorithms arise from epistemic uncertainties (incomplete knowledge) in the input signals as well as conflicts between them. These aspects must be considered during information processing to obtain reliable results, which are in accordance with the real world. The analysis of the scientific state of the art shows that current solutions fulfil said requirements at most only partly. This article proposes the multilayered information fusion system MACRO (multilayer attribute-based conflict-reducing observation) employing the μBalTLCS (fuzzified balanced two-layer conflict solving) fusion algorithm to reduce the impact of conflicts on the fusion result. The performance of the contribution is shown by its evaluation in the scope of a machine condition monitoring application under laboratory conditions. Here, the MACRO system yields the best results compared to state-of-the-art fusion mechanisms. The utilised data is published and freely accessible.
Abstract. In industrial processes a vast variety of different sensors is increasingly used to measure and control processes, machines, and logistics. One way to handle the resulting large amount of data created by hundreds or even thousands of different sensors in an application is to employ information fusion systems. Information fusion systems, e.g. for condition monitoring, combine different sources of information, like sensors, to generate the state of a complex system. The result of such an information fusion process is regarded as a health indicator of a complex system. Therefore, information fusion approaches are applied to, e.g., automatically inform one about a reduction in production quality, or detect possibly dangerous situations. Considering the importance of sensors in the previously described information fusion systems and in industrial processes in general, a defective sensor has several negative consequences. It may lead to machine failure, e.g. when wear and tear of a machine is not detected sufficiently in advance. In this contribution we present a method to detect faulty sensors by computing the consistency between sensor values. The proposed sensor defect detection algorithm exemplarily utilises the structure of a multilayered group-based sensor fusion algorithm. Defect detection results of the proposed method for different test cases and the method's capability to detect a number of typical sensor defects are shown.
Systems for process automation become increasingly complex and also tend to be composed of autonomous subsystems, which is strongly driven by the progress made in information technology. An active field of research is the implementation of monitoring and control at sub-system level using cognitive approaches. In this paper we present a method for autonomous and sensorless condition monitoring of an electric drive train. Based on experiment design we measured phase currents of a physical demonstrator device including mechanical defects and extracted signal features using proper orthogonal decomposition. In favor of classification of different defect states we performed a linear discriminant analysis, which yields appropriate data for a Fuzzy-Pattern-Classification algorithm. As a result we were able to identify different reference defect states as well as previously unknown states
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.