Let A = i≥0 A i be a standard graded Artinian K-algebra, where char K = 0. Then A has the Weak Lefschetz property if there is an element ℓ of degree 1 such that the multiplication ×ℓ : A i → A i+1 has maximal rank, for every i, and A has the Strong Lefschetz property if ×ℓ d : A i → A i+d has maximal rank for every i and d.The main results obtained in this paper are the following.
Abstract. Many algebras are expected to have the Weak Lefschetz property, although this is often very difficult to establish. We illustrate the subtlety of the problem by studying monomial and some closely related ideals. Our results exemplify the intriguing dependence of the property on the characteristic of the ground field and on arithmetic properties of the exponent vectors of the monomials.
The SHGH conjecture proposes a solution to the question of how many conditions a general union of fat points imposes on the complete linear system of curves in P 2 of fixed degree d, and it is known to be true in many cases. We propose a new problem, namely to understand the number of conditions imposed by a general union of fat points on the incomplete linear system defined by the condition of passing through a given finite set of points Z (not general). Motivated by work of Di Gennaro-Ilardi-Vallès and Faenzi-Vallès, we give a careful analysis for the case where there is a single general fat point, which has multiplicity d − 1. There is an expected number of conditions imposed by this fat point, and we study those Z for which this expected value is not achieved. We show, for instance, that if Z is in linear general position then such unexpected curves do not exist. We give criteria for the occurrence of such unexpected curves and describe the range of values of d for which they occur. Unexpected curves have a very particular structure, which we describe, and they are often unique for a given set of points. In particular, we give a criterion for when they are irreducible, and we exhibit examples both where they are reducible and where they are irreducible. Furthermore, we relate properties of Z to properties of the arrangement of lines dual to the points of Z. In particular, we obtain a new interpretation of the splitting type of a line arrangement. Finally, we use our results to establish a Lefschetz-like criterion for Terao's conjecture on the freeness of line arrangements. 2
Abstract. Each partition λ = (λ 1 , λ 2 , . . . , λ n ) determines a so-called Ferrers tableau or, equivalently, a Ferrers bipartite graph. Its edge ideal, dubbed a Ferrers ideal, is a squarefree monomial ideal that is generated by quadrics. We show that such an ideal has a 2-linear minimal free resolution; i.e. it defines a small subscheme. In fact, we prove that this property characterizes Ferrers graphs among bipartite graphs. Furthermore, using a method of Bayer and Sturmfels, we provide an explicit description of the maps in its minimal free resolution. This is obtained by associating a suitable polyhedral cell complex to the ideal/graph. Along the way, we also determine the irredundant primary decomposition of any Ferrers ideal. We conclude our analysis by studying several features of toric rings of Ferrers graphs. In particular we recover/establish formulae for the Hilbert series, the Castelnuovo-Mumford regularity, and the multiplicity of these rings. While most of the previous works in this highly investigated area of research involve path counting arguments, we offer here a new and self-contained approach based on results from Gorenstein liaison theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.