The passive transbilayer movement-flip-flop-was investigated on planar bilayer lipid membranes (BLMs), containing myristic, stearic, or linoleic long-chain fatty acids (FA). In response to a transbilayer pH gradient, a difference in the surface charges between inner and outer leaflets appeared. Because the BLM was formed from FA and neutral lipid, a surface potential difference was originated solely by a concentration difference of the initially equally distributed ionized FA. As revealed by zeta-potential measurements, the corresponding surface potential difference DeltaPhi(s) was at least twice the value expected from a titration of the FA alone. The additional surface charge was attributed to FA flip-flop induced by the transbilayer pH gradient. DeltaPhi(s) was derived from capacitive current measurements carried out with a direct current (dc) bias and was corrected for changes of membrane dipole potential Phi(d). Dual-wavelength ratiometric fluorescence measurements have shown that Phi(d) values of the pure DPhPC bilayers and BLMs containing 40 mol % FA differ by less than 6%. It is concluded that fast FA flip-flop is not restricted to membranes with high curvature. The role of pH gradient as an effective driving force for the regulation of FA uptake is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.