The motion and shape evolution of viscous drops made from a dilute suspension of tiny, spherical glass beads sedimenting in an otherwise quiescent liquid is investigated both experimentally and theoretically for conditions of low Reynolds number. In the (presumed) absence of any significant interfacial tension, the Bond number [Bscr ] = (Δρ)gR2/σ is effectively infinite. The key stages of deformation of single drops and pairs of interacting drops are identified. Of particular interest are (i) the coalescence of two trailing drops, (ii) the subsequent formation of a torus, and (iii) the breakup of the torus into two or more droplets in a repeating cascade. To overcome limitations of the boundary-integral method in tracking highly deformed interfaces and coalescing and dividing drops, we develop a formal analogy between drops of homogeneous liquid and a dilute, uniformly distributed swarm of sedimenting particles, for which only the 1/r far-field hydrodynamic interactions are important. Simple, robust numerical simulations using only swarms of Stokeslets reproduce the main phenomena observed in the classical experiments and in our flow-visualization studies. Detailed particle image velocimetry (PIV) for axisymmetric configurations enable a mechanistic analysis and confirm the theoretical results. We expose the crucial importance of the initial condition – why a single spherical drop does not deform substantially, but a pair of spherical drops, or a bell-shaped drop similar to what is actually formed in the laboratory, does undergo the torus/breakup transformation. The extreme sensitivity of the streamlines to the shape of the ring-like swarm explains why the ring that initially forms in the experiments does not behave like the slender open torus analysed asymptotically by Kojima, Hinch & Acrivos (1984). Essentially all of the phenomena described above can be explained within the realm of Stokes flow, without resort to interfacial tension or inertial effects.
In this review, we shall present a survey about recent developments in the understanding of the separation of a mixture in a rotating vessel. Based on the first principles of fluid dynamics and earlier substantial results concerned with gravity settling, recently a great variety of investigations has been published for different centrifugal devices and ranges of parameters. We shall summarize the results and provide a general view about their validity and practical applications. Finally, we shall outline possibilities for further theoretical and experimental research that is stimulated by new phenomena. Even though the theoretical results are restricted to monodisperse, Newtonian suspensions, consisting of small spherical particles freely suspended in a clear fluid, and bulk settling. the results and the physical insight gained can be applied to many industrial problems like continuous separation and filtration in centrifuges.
Here we shall present a linear stability analysis of a laminar, stratified flow of two superposed fluids which are a clear liquid and a suspension of solid particles. The investigation is based upon the assumption that the concentration remains constant within the suspension layer. Even for moderate flow-rates the base-state results for a shear induced resuspension flow justify the latter assumption. The numerical solutions display the existence of two different branches that contribute to convective instability: long and short waves which coexist in a certain range of parameters. Also, a range exists where the flow is absolutely unstable. That means a convectively unstable resuspension flow can be only observed for Reynolds numbers larger than a lower, critical Reynolds number but still smaller than a second critical Reynolds number. For flow rates which give rise to a Reynolds number larger than the second critical Reynolds number, the flow is absolutely unstable. In some cases, however, there exists a third bound beyond that the flow is convectively unstable again. Experiments show the same phenomena: for small flow-rates short waves were usually observed but occasionally also the coexistence of short and long waves. These findings are qualitatively in good agreement with the linear stability analysis. Larger flow-rates in the range of the second critical Reynolds number yield strong interfacial waves with wave breaking and detached particles. In this range, the measured flow-parameters, like the resuspension height and the pressure drop are far beyond the theoretical results. Evidently, a further increase of the Reynolds number indicates the transition to a less wavy interface. Finally, the linear stability analysis also predicts interfacial waves in the case of relatively small suspension heights. These results are in accordance with measurements for ripple-type instabilities as they occur under laminar and viscous conditions for a mono-layer of particles. NotationDimensional variables spacing of the duct particle diameter gravitational constant total flux of clear liquid per unit depth
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.