Localization of ASH1 mRNA to the distal cortex of daughter but not mother cells at the end of anaphase is responsible for the two cells' differential mating-type switching during the subsequent cell cycle. This localization depends on actin filaments and a type V myosin (She1/Myo4). The 3' untranslated region (3' UTR) of ASH1 mRNA is reportedly capable of directing heterologous RNAs to a mother cell's bud [1] [2]. Surprisingly, however, its replacement has little or no effect on the localisation of ASH1 mRNA. We show here that, unlike all other known localization sequences that have been found in 3' UTRs, all the elements involved in ASH1 mRNA localization are located at least partly within its coding region. A 77 nucleotide region stretching from 7 nucleotides 5' to 67 nucleotides 3' of the stop codon of ASH1 mRNA is sufficient to localize mRNAs to buds; the secondary structure of this region, in particular two stems, is important for its localizing activity. Two regions entirely within coding sequences, both sufficient to localize green fluorescent protein (GFP) mRNA to growing buds, are necessary for ASH1 mRNA localization during anaphase. These three regions can anchor GFP mRNA to the distal cortex of daughter cells only inefficiently. The tight anchoring of ASH1 mRNA to the cortex of the daughter cell depends on translation of the carboxy-terminal sequences of Ash1 protein.
For the design of potent subunit vaccines, it is of paramount importance to identify all antigens immunologically recognized by a patient population infected with a pathogen. We have developed a rapid and efficient procedure to identify such commonly recognized antigens, and here we provide a comprehensive in vivo antigenic profile of Staphylococcus aureus, an important human pathogen. S. aureus peptides were displayed on the surface of Escherichia coli via fusion to one of two outer membrane proteins (LamB and FhuA) and probed with sera selected for high Ab titer and opsonic activity. A total of 60 antigenic proteins were identified, most of which are located or predicted to be located on the surface of the bacterium or secreted. The identification of these antigens and their reactivity with individual sera from patients and healthy individuals greatly facilitate the selection of promising vaccine candidates for further evaluation. This approach, which makes use of whole genome sequence information, has the potential to greatly accelerate and facilitate the formulation of novel vaccines and is applicable to any pathogen that induces Abs in humans and͞or experimental animals.
The discovery of catalytically active RNA has provided the basis for the evolutionary concept of an RNA world. It has been proposed that during evolution the functions of ancient catalytic RNA were modulated by low molecular weight effectors, related to antibiotics, present in the primordial soup. Antibiotics and RNA may have coevolved in the formation of the modern ribosome. Here we report that a set of aminoglycoside antibiotics, which are known to interact with the decoding region of the 16S ribosomal RNA of Escherichia coli, inhibit the second step of splicing of the T4 phage-derived td intron. Thus catalytic RNA seems to interact not only with a mononucleotide and an amino acid, but also with another class of biomolecules, the sugars. Splicing of other group I introns but not group II introns was inhibited. The similarity in affinity and specificity of these antibiotics for group I introns and rRNAs may result from recognition of evolutionarily conserved structures.
The fact that RNAs containing the consensus sequence, as well as sequences that display variations within this region, specifically recognize neomycin suggests that a structural motif rather than a particular nucleotide sequence is required for neomycin recognition. We propose that a hairpin stem-loop structural motif, which might feature a widened major groove, may be a prerequisite for neomycin recognition. This structural pattern can be extrapolated to other natural neomycin-responsive RNAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.