The thermal properties of graphene have proved to be exceptional and are partly maintained in its multi-layered form, graphene nanoplatelets (GnP). Since these carbon-based nanostructures are hydrophobic, functionalization is needed in order to assess their long-term stability in aqueous suspensions. In this study, the convective heat transfer performance of a polycarboxylate chemically modified GnP dispersion in water at 0.50 wt% is experimentally analyzed. After designing the nanofluid, dynamic viscosity, thermal conductivity, isobaric heat capacity and density are measured using rotational rheometry, the transient hot-wire technique, differential scanning calorimetry and vibrating U-tube methods, respectively, in a wide temperature range. The whole analysis of thermophysical and rheological properties is validated by two laboratories. Afterward, an experimental facility is used to evaluate the heat transfer performance in a turbulent regime. Convective heat transfer coefficients are obtained using the thermal resistances method, reaching enhancements for the nanofluid of up to 13%. The reported improvements are achieved without clear enhancements in the nanofluid thermal conductivity. Finally, dimensionless analyses are carried out by employing the Nusselt and Péclet numbers and Darcy friction factor.
The lack of a standard experimental procedure to determine thermal conductivity of fluids is noticeable in heat transfer processes from practical and fundamental perspectives. Since a wide variety of techniques have been used, reported literature data have huge discrepancies. A common practice is using manufactured thermal conductivity meters for nanofluids, which can standardize the measurements but are also somewhat inaccurate. In this study, a new methodology to perform reliable measurements with a recent commercial transient hot-wire device is introduced. Accordingly, some extensively studied fluids in the literature (water, ethylene glycol, ethylene glycol:water mixture 50:50 vol%, propylene glycol, and n-tetradecane) covering the range 0.100 to 0.700 W m−1 K−1 were used to check the device in the temperature range 283.15 to 333.15 K. Deviations between the collected data and the theoretical model, and repeatabilities and deviations between reported and literature values, were analyzed. Systematic deviations in raw data were found, and a correction factor depending on the mean thermal conductivity was proposed to operate with nanofluids. Considering all tested effects, the expanded (k = 2) uncertainty of the device was set as 5%. This proposed methodology was also checked with n-hexadecane and magnesium-oxide-based n-tetradecane nanofluids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.