Accurate geometric quantification of the human heart is a key step in the diagnosis of numerous cardiac diseases, and in the management of cardiac patients. Ultrasound imaging is the primary modality for cardiac imaging, however acquisition requires high operator skill, and its interpretation and analysis is difficult due to artifacts. Reconstructing cardiac anatomy in 3D can enable discovery of new biomarkers and make imaging less dependent on operator expertise, however most ultrasound systems only have 2D imaging capabilities. We propose both a simple alteration to the Pix2Vox++ networks for a sizeable reduction in memory usage and computational complexity, and a pipeline to perform reconstruction of 3D anatomy from 2D standard cardiac views, effectively enabling 3D anatomical reconstruction from limited 2D data. We evaluate our pipeline using synthetically generated data achieving accurate 3D whole-heart reconstructions (peak intersection over union score $$> 0.88$$ > 0.88 ) from just two standard anatomical 2D views of the heart. We also show preliminary results using real echo images.
Aims Obstructive hypertrophic cardiomyopathy (oHCM) is characterized by dynamic obstruction of the left ventricular (LV) outflow tract (LVOT). Although this may be mediated by interplay between the hypertrophied septal wall, systolic anterior motion of the mitral valve, and papillary muscle abnormalities, the mechanistic role of LV shape is still not fully understood. This study sought to identify the LV end-diastolic morphology underpinning oHCM. Methods and results Cardiovascular magnetic resonance images from 2398 HCM individuals were obtained as part of the NHLBI HCM Registry. Three-dimensional LV models were constructed and used, together with a principal component analysis, to build a statistical shape model capturing shape variations. A set of linear discriminant axes were built to define and quantify (Z-scores) the characteristic LV morphology associated with LVOT obstruction (LVOTO) under different physiological conditions and the relationship between LV phenotype and genotype. The LV remodelling pattern in oHCM consisted not only of basal septal hypertrophy but a combination with LV lengthening, apical dilatation, and LVOT inward remodelling. Salient differences were observed between obstructive cases at rest and stress. Genotype negative cases showed a tendency towards more obstructive phenotypes both at rest and stress. Conclusions LV anatomy underpinning oHCM consists of basal septal hypertrophy, apical dilatation, LV lengthening, and LVOT inward remodelling. Differences between oHCM cases at rest and stress, as well as the relationship between LV phenotype and genotype, suggest different mechanisms for LVOTO. Proposed Z-scores render an opportunity of redefining management strategies based on the relationship between LV anatomy and LVOTO.
Left ventricular outflow tract obstruction (LVOTO) is common in hypertrophic cardiomyopathy (HCM), but relationships between anatomical metrics and obstruction are poorly understood. We aimed to develop machine learning methods to evaluate LVOTO in HCM patients and quantify relationships between anatomical metrics and obstruction. This retrospective analysis of 1905 participants of the HCM Registry quantified 11 anatomical metrics derived from 14 landmarks automatically detected on the three-chamber long axis cine CMR images. Linear and logistic regression was used to quantify strengths of relationships with the presence of LVOTO (defined by resting Doppler pressure drop of > 30 mmHg), using the area under the receiver operating characteristic (AUC). Intraclass correlation coefficients between the network predictions and three independent observers showed similar agreement to that between observers. The distance from anterior mitral valve leaflet tip to basal septum (AML-BS) was most highly correlated with Doppler pressure drop (R2 = 0.19, p < 10–5). Multivariate stepwise regression found the best predictive model included AML-BS, AML length to aortic valve diameter ratio, AML length to LV width ratio, and midventricular septal thickness metrics (AUC 0.84). Excluding AML-BS, metrics grouped according to septal hypertrophy, LV geometry, and AML anatomy each had similar associations with LVOTO (AUC 0.71, 0.71, 0.68 respectively, p = ns), significantly less than their combination (AUC 0.77, p < 0.05 for each). Anatomical metrics derived from a standard three-chamber CMR cine acquisition can be used to highlight risk of LVOTO, and suggest further investigation if necessary. A combination of geometric factors is required to provide the best risk prediction.
Neonatal coarctation of the aorta (CoA) is a common congenital heart defect. Its antenatal diagnosis remains challenging, and its pathophysiology is poorly understood. We present a novel statistical shape modeling (SSM) pipeline to study the role and predictive value of arch shape in CoA in utero. Cardiac magnetic resonance imaging (CMR) data of 112 fetuses with suspected CoA was acquired and motion-corrected to three-dimensional volumes. Centerlines from fetal arches were extracted and used to build a statistical shape model capturing relevant anatomical variations. A linear discriminant analysis was used to find the optimal axis between CoA and false positive cases. The CoA shape risk score classified cases with an area under the curve of 0.907. We demonstrate the feasibility of applying a SSM pipeline to three-dimensional fetal CMR data while providing novel insights into the anatomical determinants of CoA and the relevance of in utero arch anatomy for antenatal diagnosis of CoA. Graphical abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.