email christou@pvcf.udl.es) † These authors contributed equally to this work.Keywords: biofortification, antioxidants, genetic engineering. SummaryAntioxidants are protective molecules that neutralize reactive oxygen species and prevent oxidative damage to cellular components such as membranes, proteins and nucleic acids, therefore reducing the rate of cell death and hence the effects of ageing and ageing-related diseases. The fortification of food with antioxidants represents an overlap between two diverse environments, namely fortification of staple foods with essential nutrients that happen to have antioxidant properties (e.g. vitamins C and E) and the fortification of luxury foods with healthpromoting but non-essential antioxidants such as flavonoids as part of the nutraceuticals/ functional foods industry. Although processed foods can be artificially fortified with vitamins, minerals and nutraceuticals, a more sustainable approach is to introduce the traits for such health-promoting compounds at source, an approach known as biofortification. Regardless of the target compound, the same challenges arise when considering the biofortification of plants with antioxidants, that is the need to modulate endogenous metabolic pathways to increase the production of specific antioxidants without affecting plant growth and development and without collateral effects on other metabolic pathways. These challenges become even more intricate as we move from the engineering of individual pathways to several pathways simultaneously. In this review, we consider the state of the art in antioxidant biofortification and discuss the challenges that remain to be overcome in the development of nutritionally complete and health-promoting functional foods.
Malnutrition is a prevalent and entrenched global socioeconomic challenge that reflects the combined impact of poverty, poor access to food, inefficient food distribution infrastructure, and an over-reliance on subsistence mono-agriculture. The dependence on staple cereals lacking many essential nutrients means that malnutrition is endemic in developing countries. Most individuals lack diverse diets and are therefore exposed to nutrient deficiencies. Plant biotechnology could play a major role in combating malnutrition through the engineering of nutritionally enhanced crops. In this article, we discuss different approaches that can enhance the nutritional content of staple crops by genetic engineering (GE) as well as the functionality and safety assessments required before nutritionally enhanced GE crops can be deployed in the field. We also consider major constraints that hinder the adoption of GE technology at different levels and suggest policies that could be adopted to accelerate the deployment of nutritionally enhanced GE crops within a multicomponent strategy to combat malnutrition.
The AtOR gene enhances carotenoid levels in corn by promoting the formation of plastoglobuli when the carotenoid pool is limited, but has no further effect when carotenoids are already abundant. The cauliflower orange (or) gene mutation influences carotenoid accumulation in plants by promoting the transition of proplastids into chromoplasts, thus creating intracellular storage compartments that act as metabolic sink. We overexpressed the Arabidopsis OR gene under the control of the endosperm-specific wheat LMW glutenin promoter in a white corn variety that normally accumulates only trace amounts of carotenoids. The total endosperm carotenoid content in the best-performing AtOR transgenic corn line was 32-fold higher than wild-type controls (~25 µg/g DW at 30 days after pollination) but the principal carotenoids remained the same, suggesting that AtOR increases the abundance of existing carotenoids without changing the metabolic composition. We analyzed the expression of endogenous genes representing the carotenoid biosynthesis and MEP pathways, as well as the plastid fusion/translocation factor required for chromoplast formation, but only the DXS1 gene was upregulated in the transgenic corn plants. The line expressing AtOR at the highest level was crossed with four transgenic corn lines expressing different carotenogenic genes and accumulating different carotenoids. The introgression of AtOR increased the carotenoid content of the hybrids when there was a limited carotenoid pool in the parental line, but had no effect when carotenoids were already abundant in the parent. The AtOR gene therefore appears to enhance carotenoid levels by promoting the formation of carotenoid-sequestering plastoglobuli when the carotenoid pool is limited, but has no further effect when carotenoids are already abundant because high levels of carotenoids can induce the formation of carotenoid-sequestering plastoglobuli even in the absence of AtOR.
The eight Millennium Development Goals (MDGs) are international development targets for the year 2015 that aim to achieve relative improvements in the standards of health, socioeconomic status and education in the world's poorest countries. Many of the challenges addressed by the MDGs reflect the direct or indirect consequences of subsistence agriculture in the developing world, and hence, plant biotechnology has an important role to play in helping to achieve MDG targets. In this opinion article, we discuss each of the MDGs in turn, provide examples to show how plant biotechnology may be able to accelerate progress towards the stated MDG objectives, and offer our opinion on the likelihood of such technology being implemented. In combination with other strategies, plant biotechnology can make a contribution towards sustainable development in the future although the extent to which progress can be made in today's political climate depends on how we deal with current barriers to adoption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.