The attention mechanism in natural language processing and self-attention mechanism in vision transformers improved many deep learning models. An implementation of the self-attention mechanism with the previously developed ConvLSTM sequence-to-one model was done in order to make a comparative evaluation with statistical testing. First, the new ConvLSTM sequence-to-one model with a self-attention mechanism was developed and then the self-attention layer was removed in order to make comparison. The hyperparameters optimization process was conducted by grid search for integer and string type parameters, and with particle swarm optimization for float type parameters. A cross validation technique was used for better evaluating models with a predefined ratio of train-validation-test subsets. Both models with and without a self-attention layer passed defined evaluation criteria that means that models are able to generate the image of the global aerosol thickness and able to find patterns for changes in the time domain. The model obtained by an ablation study on the self-attention layer achieved better outcomes for Root Mean Square Error and Euclidean Distance in regards to developed ConvLSTM-SA model. As part of the statistical test, a Kruskal–Wallis H Test was done since it was determined that the data did not belong to the normal distribution and the obtained results showed that both models, with and without the SA layer, predict similar images with patterns at the pixel level to the original dataset. However, the model without the SA layer was more similar to the original dataset especially in the time domain at the pixel level. Based on the comparative evaluation with statistical testing, it was concluded that the developed ConvLSTM-SA model better predicts without an SA layer.
In nuclear physics experiments, it is very important to isolate the measured
quantities from electromagnetic noise. Without this possibility, it is
impossible to obtain usable experimental results since natural
electromagnetic noise can be several orders of magnitude larger than the
measured magnitude. In order to enable such measurements, it is necessary to
eliminate electromagnetic noise from the experimental procedure. This is
achieved by shielding against electromagnetic radiation. In this paper,
experiments were performed to protect a room from electromagnetic noise. By
applying all known methods of shielding against electromagnetic radiation,
it was concluded that the room can be protected from the electrical
component, but it is impossible to protect it from the magnetic component of
electromagnetic radiation.
Mathematical methods are the basis of most models that describe the natural phenomena around us. However, the well-known conventional mathematical models for atmospheric modeling have some limitations. Machine learning with Big Data is also based on mathematics but offers a new approach for modeling. There are two methodologies to develop deep learning models for spatio-temporal image prediction. On these bases, two models were built—ConvLSTM and CNN-LSTM—with two types of predictions, i.e., sequence-to-sequence and sequence-to-one, in order to forecast Aerosol Optical Thickness sequences. The input dataset for training was NASA satellite imagery MODAL2_E_AER_OD from Terra/MODIS satellites, which presents global Aerosol Optical Thickness with an 8 day temporal resolution from 2000 to the present. The obtained results show that the ConvLSTM sequence-to-one model had the lowest RMSE error and the highest Cosine Similarity value. The advantages of the developed DL models are that they can be executed in milliseconds on a PC, can be used for global-scale Earth observations, and can serve as tracers to study how the Earth’s atmosphere moves. The developed models can be used as transfer learning for similar image time-series forecasting models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.