The research work deals with an approach to perform texture and morphological based retrieval on a corpus of food grain images. The work has been carried out using Image Warping and Image analysis approach. The method has been employed to normalize food grain images and hence eliminating the effects of orientation using image warping technique with proper scaling. The images have been properly enhanced to reduce noise and blurring in image. Finally image has segmented applying proper segmentation methods so that edges may be detected effectively and thus rectification of the image has been done. The approach has been tested on sufficient number of food grain images of rice based on intensity, position and orientation. A digital image analysis algorithm based on color, morphological and textural features was developed to identify the six varieties rice seeds which are widely planted in Chhattisgarh region. Nine color and nine morphological and textural features were used for discriminant analysis. A back propagation neural network-based classifier was developed to identify the unknown grain types. The color and textural features were presented to the neural network for training purposes. The trained network was then used to identify the unknown grain types.
Text mining is an emerging technology that can be used to augment existing data in corporate databases by making unstructured text data available for analysis. The incredible increase in online documents, which has been mostly due to the expanding internet, has renewed the interest in automated document classification and data mining. The demand for text classification to aid the analysis and management of text is increasing. Text is cheap, but information, in the form of knowing what classes a text belongs to, is expensive. Text classification is the process of classifying documents into predefined categories based on their content. Automatic classification of text can provide this information at low cost, but the classifiers themselves must be built with expensive human effort, or trained from texts which have themselves been manually classified. Both classification and association rule mining are indispensable to practical applications. For association rule mining, the target of discovery is not pre-determined, while for classification rule mining there is one and only one predetermined target. Thus, great savings and conveniences to the user could result if the two mining techniques can somehow be integrated. In this paper, such an integrated framework, called associative classification is used for text categorization The algorithm presented here for text classification uses words as features , to derive feature set from preclassified text documents. The concept of Naïve Bayes classifier is then used on derived features for final classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.