We investigate the inelastic spin-flip rate for electrons in a quantum dot due to their contact hyperfine interaction with lattice nuclei. In contrast to other works, we obtain a spin-phonon coupling term from this interaction by taking directly into account the motion of nuclei in the vibrating lattice. In the calculation of the transition rate the interference of first and second orders of perturbation theory turns out to be essential. It leads to a suppression of relaxation at long phonon wavelengths, when the confining potential moves together with the nuclei embedded in the lattice. At higher frequencies (or for a fixed confining potential), the zero-temperature rate is proportional to the frequency of the emitted phonon. We address both the transition between Zeeman sublevels of a single electron ground state as well as the triplet-singlet transition, and we provide numerical estimates for realistic system parameters. The mechanism turns out to be less efficient than electron-nuclei spin relaxation involving piezoelectric electron-phonon coupling in a GaAs quantum dot.
We calculate electron and nuclear spin relaxation rates in a quantum dot due to the combined action of Nyquist noise and electron-nuclei hyperfine or spin-orbit interactions. The relaxation rate is linear in the resistance of the gate circuit and, in the case of spin-orbit interaction, it depends essentially on the orientations of both the static magnetic field and the fluctuating electric field, as well as on the ratio between Rashba and Dresselhaus interaction constants. We provide numerical estimates of the relaxation rate for typical system parameters, compare our results with other, previously discussed mechanisms, and show that the Nyquist mechanism can have an appreciable effect for experimentally relevant systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.