The diffusion-driven self-assembly of rodlike particles was studied by means of Monte Carlo simulation. The rods were represented as linear k-mers (i.e., particles occupying k adjacent sites). In the initial state, they were deposited onto a two-dimensional square lattice of size L×L up to the jamming concentration using a random sequential adsorption algorithm. The size of the lattice, L, was varied from 128 to 2048, and periodic boundary conditions were applied along both x and y axes, while the length of the k-mers (determining the aspect ratio) was varied from 2 to 12. The k-mers oriented along the x and y directions (k_{x}-mers and k_{y}-mers, respectively) were deposited equiprobably. In the course of the simulation, the numbers of intraspecific and interspecific contacts between the same sort and between different sorts of k-mers, respectively, were calculated. Both the shift ratio of the actual number of shifts along the longitudinal or transverse axes of the k-mers and the electrical conductivity of the system were also examined. For the initial random configuration, quite different self-organization behavior was observed for short and long k-mers. For long k-mers (k≥6), three main stages of diffusion-driven spatial segregation (self-assembly) were identified: the initial stage, reflecting destruction of the jamming state; the intermediate stage, reflecting continuous cluster coarsening and labyrinth pattern formation; and the final stage, reflecting the formation of diagonal stripe domains. Additional examination of two artificially constructed initial configurations showed that this pattern of diagonal stripe domains is an attractor, i.e., any spatial distribution of k-mers tends to transform into diagonal stripes. Nevertheless, the time for relaxation to the steady state essentially increases as the lattice size growth.
The vertical drying of a colloidal film containing rodlike particles was studied by means of kinetic Monte Carlo (MC) simulation. The problem was approached using a two-dimensional square lattice, and the rods were represented as linear k-mers (i.e., particles occupying k adjacent sites). The initial state before drying was produced using a model of random sequential adsorption (RSA) with isotropic orientations of the k-mers (orientation of the k-mers along horizontal x and vertical y directions are equiprobable). In the RSA model, overlapping of the k-mers is forbidden. During the evaporation, an upper interface falls with a linear velocity of u in the vertical direction and the k-mers undergo translation Brownian motion. The MC simulations were run at different initial concentrations, p_{i}, (p_{i}∈[0,p_{j}], where p_{j} is the jamming concentration), lengths of k-mers (k∈[1,12]), and solvent evaporation rates, u. For completely dried films, the spatial distributions of k-mers and their electrical conductivities in both x and y directions were examined. Significant evaporation-driven self-assembly and orientation stratification of the k-mers oriented along the x and y directions were observed. The extent of stratification increased with increasing value of k. The anisotropy of the electrical conductivity of the film can be finely regulated by changes in the values of p_{i}, k, and u.
Для стабілізації водних нанорідин на основі НТ широко використовуються поверхнево-активні речовини (ПАР) [11, 12]. На даний час механізми стабілізації НТ за допомогою цетилтриметиламоній броміду (ЦТАБ) вивчені досить детально в широкому інтервалі концентрацій, включаючи критичну концентрацію міцелоутворення (ККМ (C s CMC ≈ 1 мM або 0.0364 мас. % (надалі %) [13][14][15][16][17]. Характер адсорбції ЦТАБ на поверхні НТ залежить від концентрації ПАР, а в околі ККМ можлива навіть мультишарова адсорбція [15]. Для концентрації НТ, C n = 0.01 %, рівень насичення абсорбції спостерігався при C s ≈ 0.9 мM (x = C s /C n 3.3) і ця концентрація була названа оптимальною для стабілізації НТ. Доведено, що адсорбція ЦТАБ може перезаряджати НТ і при збільшенні C s зета потенціал змінює свій знак з негативного на позитивний C s [15, 16]. При C n = 0.175 % ізоелектрична точка при pH 6.3 спостерігалась при C s ≈ 1 мM (x = 0.21) і насичення зета потенціалу спостерігалося при C s 2 мM (x 0.42) [16]. Рівень стабілізації НТ контролюється величинами C n і C s [14]. Наприклад, для досить малої концентрації НТ, C n = 10 -3 %, ефективна стабілізація спостерігалась як при C s = 0.27 мM (x = 9.8), так і при C s = 2.7 мM (x = 98) (тобто нижче і вище точки ККМ). Разом з тим, при більших концентраціях НТ, C n = 2.5 .
10-2 %, стабілі-зація була більш ефективна при C s = 0.27 мM (x = 0.39) в порівнянні з C s = 2.7 мM (x = 3.9). Ці ефекти були пояснені різною адсорбцією індивідуальних молекул ЦТАБ та їх міцел на поверхні НТ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.