Resonant optical excitation was used to create a macroscopic nonequilibrium ensemble of "dark" excitons with an unprecedented long lifetime in a two-dimensional electron system placed in a quantizing magnetic field. Exotic three-particle and four-particle states, plasmarons and plasmon-exciton molecules, coupled with the surrounding electrons through the collective plasma oscillations are engineered. Plasmarons and plasmon-exciton molecules are manifested as new features in the recombination spectra of nonequilibrium systems.
We report on optical visualization of spin propagation more than 100 µm. We present an electronic system in a new state of aggregation, the magnetofermionic condensate, in which the lowest-energy spin excitations − photoexcited spin-triplet magnetoexcitons – freely propagate over long distances, in the order of a millimeter, which implies non-diffusion spin transport. Our results open up a completely new system suitable for spintronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.