Many theoretical models show a direct connection between energy transport and particle transport. For a complete understanding of transport processes both energy and particle transport must be understood. A discussion is presented of how energy and particle transport should be related in terms of the relative importance of the diagonal and off-diagonal terms in the equation for the fluxes. A model for particle transport is discussed and it is shown that this model can describe measured density profiles in the DIII-D tokamak under a wide range of DIII-D parameters. This model is obtained from a Lagrangian formulation of the kinetic equation and utilizes the assumption that transport takes place while approximately conserving the first and second adiabatic invariants. The measured results utilize the improved diagnostic capability of DIII-D with an improved capability of measuring current density profiles and particle density profiles. This model is then extended to include energy transport. It is experimentally observed that the particle diffusivity and the thermal diffusivity do not differ greatly and have roughly the same radial dependence. This is discussed and compared with the model. A brief discussion of the effect of internal transport barriers is included.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.