Numerical calculations of spatio-temporal characteristics of the homogeneous barrier discharge in helium are performed by means of a one-dimensional fluid model. The influence of the elementary processes on the discharge behaviour is studied by variation of the corresponding rate constants. The simulation and the analytical interpretation are carried out for two basic modes of the homogeneous barrier discharge, i.e. the Townsend and glow modes. The Townsend discharge is characterized by the absence of quasineutral plasma; several current peaks may occur during the half-cycle. The oscillations of the current are caused by a lag between the ion production nearby the anode and the subsequent ion–electron emission on the cathode. The specificity of the glow discharge is the development of a cathode region and a positive column during the breakdown, as well as the presence of quasineutral plasma in subsequent phases. The positive column occurs because the shielding of the external field by the plasma is not instantaneous. The dependence of the discharge behaviour on the external parameters, such as the amplitude and frequency of the applied voltage, discharge gap width, and thickness of dielectric barriers, is analysed. The mode of the discharge is governed mostly by the gap width and barrier thickness and depends weakly on the amplitude and frequency of the applied voltage. As the barriers are thin and the discharge gap is sufficiently wide, the glow mode occurs; otherwise, the discharge is Townsend.
A fluid model of the homogeneous barrier discharge is constructed for nitrogen at atmospheric pressure. The primary excitation and ionization processes specific for this discharge are pointed out. The calculations show that, in a wide range of external conditions, the homogeneous barrier discharge in nitrogen has a form of Townsend discharge which is easy to study. The influence of different mechanisms of electron emission from dielectric barriers and surface recombination over the electrical characteristics of a barrier discharge is studied. Introduction of a finite lifetime at the surface for adsorbed electrons allows us to obtain the results qualitatively corresponding to the experimental data.
Diffuse barrier discharges (BDs) are characterized by the periodicity of their discharge current and by the uniform coverage of the entire electrode surface by the plasma. Up to now the discharge development, their appearance and dynamics cannot be adequately explained by elementary processes. Different processes are discussed in the literature controversially, in particular the importance of volume and surface processes on the pre-ionization (Penning-ionization, secondary (γ-) processes, role of surface charges). Diffuse BDs in nitrogen with small admixtures of oxygen are investigated by plasma diagnostics (current/voltage-oscillography, optical emission spectroscopy) and numerical modelling. Special attention is paid to the transition to the usual filamentary mode, characterized by the presence of micro-discharges and caused by the admixture of oxygen in the range of 0-1200 ppm (parts-per-million). This transition starts at low values of O 2 (about 450 ppm) and is introduced by an oscillative multi-peak mode. At higher admixtures (about 1000 ppm) the micro-discharges are generated. According to the results of numerical modelling, secondary electron emission by N 2 (A 3 u) metastable states plays a major role in discharge maintenance. Due to the much more effective quenching of these states by O 2 and NO than by N 2 the subsequent delivery of electrons will be decreased when the oxygen amount is increased.
Experimental investigation of the electrical and optical discharge characteristics is performed in the barrier discharge in nitrogen at 50 Hz. The time dependences of the current and the applied voltage are measured. Short-time photographs of the light intensity distribution in the discharge are obtained. When the frequency of the external voltage is low and dielectric barriers made of ‘Mylar’ are used, it is possible to obtain a homogeneous form of the discharge. During the pulse, the discharge current reaches the value of some amperes, and the maximum power is of the order of some tens of kilowatts. The appearance of a homogeneous discharge is interpreted as the widening of a single-electron avalanche due to photoemission. On the basis of a two-dimensional fluid model, the possibility of the initiation of the discharge by a narrow avalanche is demonstrated. It is shown that the observed discharge is a glow discharge, where the space charge plays a crucial role. The discharge passes successively through the Townsend phase, the streamer phase, the phase of radial expansion and, finally, the afterglow phase. The theory predicts that the distribution of the light intensity in the phase of discharge expansion must have the form of a ring widening in time. The properties of the power supply play an important role in the model. A comparison between the theoretical and experimental results shows good agreement.
A Townsend-like barrier discharge in nitrogen at 7 kHz frequency is studied experimentally and theoretically. The discharge is homogeneous under a certain range of parameters, which depends on the material of the barriers. The higher the dielectric permittivity of barriers is, the narrower is this range. It is shown that the discharge properties do not only depend on the total capacitance of barriers but they also explicitly depend on the permittivity of a dielectric sheath near the surface. Measured ranges of existence of a Townsend discharge agree with the calculations based on a self-consistent model. Also, the two-dimensional simulations of the barrier discharge show that the stability of the discharge relative to radial fluctuations may depend on the permittivity of barriers. The effect of barrier material is interpreted as the influence of dielectric permittivity on the electric field induced by surface charges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.