The investigation was intended to examine the influence of selected moisture levels (4.26, 12.66, 25.31, 37.89, 50.21% wet basis) on engineering properties namely, dimensional, gravimetric, frictional, aerodynamic as well as mechanical properties of five selected varieties of sesame seed namely GT‐3, GT‐4, GJT‐5, GT‐6, and TKG 22. The investigation finds out that fluctuations in moisture level significantly (p ≤ 0.05) influenced the engineering properties assessed. Increase in moisture content influenced a rise in length, width, thickness, geometric mean diameter, arithmetic mean diameter, sphericity, volume, volumetric expansion coefficient, elongation ratio, flakiness ratio, surface area, projected area, thousand seeds weight, compressibility index, Hausner ratio, angle of repose, coefficient of friction, terminal velocity and Reynolds number of selected sesame verities. Whereas, a reverse trend was observed in aspect ratio, true density, bulk density, tapped densities, drag coefficient, and hardness with moisture content variation. The frictional characteristic of the seed showed improved stability with less flow ability at higher moisture levels. These outcomes disclosed that variation of seed moisture content is authoritative during designing and construction of machinery and process equipment related to sesame. It may be also beneficial in computation of design for hoppers, silos, conveyors, drying, and heat transfer equipment as well as other sesame seed‐related process and handling equipment.
The aim of this paper is to present recent developments related to power operated coconut dehusking and deshelling machines. Coconut is a fruit of great value as every part of the fruit is commercially viable. To utilize coconut fruit and its parts, it is necessary to remove the coconut husk and to break the coconut shell. Coconut husking and shell breaking are traditionally labour-intensive operations. Both the mentioned operations are tedious, require skills and prone to harm the worker. There are many attempts to reduce the human drudgery involved in coconut processing operations by making machines which can dehusk and deshell the coconuts. The paper simply explains working mechanisms, features and capacity of recently developed machineries in the field of coconut dehusking and deshelling. The different types of working mechanisms used for coconut dehusking and deshelling can be overviewed from this review, which can be helpful for further developments in this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.