Anthrax is caused by, Bacillus anthracis, a soil-borne bacterium that infects grazing animals. Kenya reported a sharp increase in livestock anthrax cases from 2005, with only 12% of the sub-counties (decentralised administrative units used by Kenyan county governments to facilitate service provision) accounting for almost a third of the livestock cases. Recent studies of the spatial extent of B. anthracis suitability across Kenya have used approaches that cannot capture the underlying spatial and temporal dependencies in the surveillance data. To address these limitations, we apply the first Bayesian approach using R-INLA to analyse a long-term dataset of livestock anthrax case data, collected from 2006 to 2020 in Kenya. We develop a spatial and a spatiotemporal model to investigate the distribution and socio-economic drivers of anthrax occurrence and incidence at the national and sub-county level. The spatial model was robust to geographically based cross validation and had a sensitivity of 75% (95% CI 65–75) against withheld data. Alarmingly, the spatial model predicted high intensity of anthrax across the Northern counties (Turkana, Samburu, and Marsabit) comprising pastoralists who are often economically and politically marginalized, and highly predisposed to a greater risk of anthrax. The spatiotemporal model showed a positive link between livestock anthrax risk and the total human population and the number of exotic dairy cattle, and a negative association with the human population density, livestock producing households, and agricultural land area. Public health programs aimed at reducing human-animal contact, improving access to healthcare, and increasing anthrax awareness, should prioritize these endemic regions.
To reduce the veterinary, public health, environmental, and economic burden associated with anthrax outbreaks, it is vital to identify the spatial distribution of areas suitable for Bacillus anthracis, the causative agent of the disease. Bayesian approaches have previously been applied to estimate uncertainty around detected areas of B. anthracis suitability. However, conventional simulation-based techniques are often computationally demanding. To solve this computational problem, we use Integrated Nested Laplace Approximation (INLA) which can adjust for spatially structured random effects, to predict the suitability of B. anthracis across Uganda. We apply a Generalized Additive Model (GAM) within the INLA Bayesian framework to quantify the relationships between B. anthracis occurrence and the environment. We consolidate a national database of wildlife, livestock, and human anthrax case records across Uganda built across multiple sectors bridging human and animal partners using a One Health approach. The INLA framework successfully identified known areas of species suitability in Uganda, as well as suggested unknown hotspots across Northern, Eastern, and Central Uganda, which have not been previously identified by other niche models. The major risk factors for B. anthracis suitability were proximity to water bodies (0–0.3 km), increasing soil calcium (between 10 and 25 cmolc/kg), and elevation of 140–190 m. The sensitivity of the final model against the withheld evaluation dataset was 90% (181 out of 202 = 89.6%; rounded up to 90%). The prediction maps generated using this model can guide future anthrax prevention and surveillance plans by the relevant stakeholders in Uganda.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.