There are many references in the literature related to connection between the space weather and the state of human organism. The search of external factors influence on humans is a multi-factor problem and it is well known that humans have a meteo-sensitivity. A direct problem of finding the earth weather conditions, under which the space weather manifests itself most strongly, is discussed in the present work for the first time in the helio-biology. From a formal point of view, this problem requires identification of subset (magnetobiotropic region) in three-dimensional earth's weather parameters such as pressure, temperature, and humidity, corresponding to the days when the human body is the most sensitive to changes in the geomagnetic field variations and when it reacts by statistically significant increase (or decrease) of a particular physiological parameter. This formulation defines the optimization of the problem, and the solution of the latter is not possible without the involvement of powerful metaheuristic methods of searching. Using the algorithm of differential evolution, we prove the existence of magnetobiotropic regions in the earth's weather parameters, which exhibit magneto-sensitivity of systolic, diastolic blood pressure, and heart rate of healthy young subjects for three weather areas (combinations of atmospheric temperature, pressure, and humidity). The maximum value of the correlation confidence for the measurements attributable to the days of the weather conditions that fall into each of three magnetobiotropic areas is an order of 0.006, that is almost 10 times less than the confidence, equal to 0.05, accepted in many helio-biological researches.
Aim of this paper is to reveal whether the geomagnetic activity (GMA) and meteorological factors (MFs) affect vascular parameters of healthy volunteers. As a trial study we used new device "Tonocard," and new vascular parameters for study-a pulse wave velocity (PWV) and an endothelial function (EnF) in addition to blood pressure measurements. These parameters never investigated before in such aspects. As far as novelty of device itself and investigated parameters we limited ourselves by monitoring only four healthy volunteers (without cardiovascular pathology). To analyze the sensitivity of their aforementioned medical indices to GMA and MFs two independent mathematical approaches were used, one of whom is based on traditional methods of mathematical statistics and the other on the theory of pattern recognition Dependence of physiological characteristics on the atmospheric temperature, revealed by both applied mathematical approaches, showed complex non-linear character of biological replies: the reaction has a different form in different temperature ranges and is manifested in the form of synchronization of slow variations of physiological and atmospheric parameters (trends) with a period of several days, while the daily variations were virtually independent. The systolic blood pressure (SBP), PWV and a difference between two specially selected values of PWV (DPWV) are approximately equally depending on atmospheric temperature, which accounts for an average of 26% to 28% of their variations. Sensitivity to the GMA for this test was found only for PWV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.