Ampicillin trihydrate, sodium salt, in aqueous solution has a pH of about 8. No complete degradation pathway has been proposed to explain the degradation of ampicillin under alkaline conditions and the information available explains the formation of only certain products. The present work was carried out with the aim of providing this information. The formation of degradation products of ampicillin trihydrate, sodium salt, produced in aqueous solutions (pH 12 and 37 degrees C) have been studied as an accelerated form of the possible degradation that may occur in aqueous solutions at pH 8. Some of the degradation products formed under these conditions were then obtained either by synthesis or by degradation of ampicillin sodium followed by isolation using semi-preparative HPLC. These compounds were characterized by 1H NMR spectroscopy. The information obtained from the experiments by HPLC and NMR spectroscopy made it possible to propose a degradation pathway for ampicillin under the conditions described above. 5R-penicilloic acid is the first degradation product of ampicillin and subsequently undergoes epimerization at C-5 to form the 5S isomer via the imine tautomer. Mechanisms for the formation of compounds previously believed to form only under acidic conditions are proposed, i.e. ampicillin penilloic acid and 2-hydroxy-3-phenylpyrazine. The formation of ampicillin polymers was detected in dilute solutions (1% w/v) within a few hours of dissolution. The presence of ampicillin penicillenic acid and ampicillin penamaldic acid was detected by 1H NMR and their main spectroscopic features determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.