The paper is devoted to the study of the initiation and formation of a negative streamer in a sharply inhomogeneous electric field and the generation of runaway electrons (REs) in air and helium at atmospheric pressure and below, as well as in sulfur hexafluoride at low pressure. Nanosecond voltage pulses of negative polarity with an amplitude of 18 kV were applied across a point-to-plane gap 8.5 mm long. The studies were carried out using broadband measuring sensors and equipment with picosecond time resolution, as well as using a four-channel ICCD camera. Using a special method for measuring the dynamic displacement current caused by the redistribution of the electric field during streamer formation, the waveforms of voltage, discharge current, RE current, and dynamic displacement current were synchronized to each other, as well as to ICCD images. Data on the generation of REs with respect to the dynamics of streamer formation were obtained. It was found that REs are generated not only during the breakdown of the gap, but also after that. It has been found that the formation time of explosive emission centers affects the generation of REs after breakdown. Based on the measurement data of the voltage, discharge current, and dynamic displacement current, the electron concentration in the plasma channel after breakdown and the electric field strength near the surface of the grounded electrode were calculated.
This paper reports on a particle-in-cell and Monte Carlo simulation of the evolution of a pulsed breakdown in a gas-filled diode at a highly inhomogeneous electric field. The simulation shows that even during the formation of a conducting plasma channel, the diode can experience a current flow capable of greatly decreasing the diode voltage compared to its value in idle mode. This current is almost independent of the gap width and is due to fast plasma motion from the cathode to the anode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.