Використання серійних тахограм для дослідження викликаної імпульсної активності ізольованих нейронів гіпокампа При тривалому відведенні мембранного потенціалу від ізольованих нейронів гіпокампа, досліджувалися зміни їх генераційної активності у часі. Описано використання тахограм для оцінки електричної активності та запропоновано використання серійних тахограм, аналіз яких дає змогу підвищити достовірність результатів. Виділено три фази зміни імпульсної активності ізольованого нейрона в процесі експериментальної реєстрації: фаза посилення активності, фаза стабільної активності і фаза спаду активності. Встановлено, що в умовах перфорованого patch-clamp фаза стабільної активності починається через 10÷15 хв після отримання щільного контакту та має середню тривалість 30 хв. Показано, що використання серійних тахограм та фаз розвитку активності підвищує якість оцінки значень міжімпульсних інтервалів при вимірюванні імпульсної генерації нейронів. Ключові слова: нейрони гіпокампа, перфорований patch-clamp, потенціал дії, гіпокамп, акомодація, міжімпульсний інтервал.
One of the signs of Alzheimer’s disease (AD) is the formation of β-amyloid plaques, which ultimately lead to the dysfunction of neurons with subsequent neurodegeneration. Although extensive researches have been conducted on the effects of different amyloid conformations such as oligomers and fibrils on neuronal function in isolated cells and circuits, the exact contribution of extracellular beta-amyloid on neurons remains incompletely comprehended. In our experiments, we studied the effect of β-amyloid peptide (Aβ1–42) on the action potential (APs) generation in isolated CA1 hippocampal neurons in perforated patch clamp conditions. Our findings demonstrate that Aβ1–42 affects the generation of APs differently in various hippocampal neurons, albeit with a shared effect of enhancing the firing response of the neurons within a minute of the start of Aβ1–42 application. In the first response type, there was a shift of 20–65% toward smaller values in the firing threshold of action potentials in response to inward current. Conversely, the firing threshold of action potentials was not affected in the second type of response to the application of Aβ1–42. In these neurons, Aβ1-42 caused a moderate increase in the frequency of spiking, up to 15%, with a relatively uniform increase in the frequency of action potentials generation regardless of the level of input current. Obtained data prove the absence of direct short-term negative effect of the Aβ1–42 on APs generation in neurons. Even with increasing the APs generation frequency and lowering the neurons’ activation threshold, neurons were functional. Obtained data can suggest that only the long-acting presence of the Aβ1–42 in the cell environment can cause neuronal dysfunction due to a prolonged increase of APs firing and predisposition to this process.
The effects of long-lasting high concentration coffee and caffeine diets on calcium mobilization in rat hippocampal neurons were studied. Changes in the basal calcium level in the hippocampal neurons of control and experimental rats kept on a coffee or caffeine diet were measured. We also recorded the changes in the Ca2+ transients’ amplitude evoked by membrane depolarization or emptying the Ca2+ depot of the endoplasmic reticulum (ER) induced by caffeine activator of the ryanodine receptors. In rats on a coffee or caffeine diet, the basal Ca2+ level was increased by 7.4% and 11%, respectively, compared to control animals. In these groups, the amplitude of Ca2+ transients increased by 70% and 90%, respectively, of the basal level in response to the membrane depolarization. In the same groups, the amount of Ca2+ released from the ER was increased by two and three times, respectively, compared to the control after activation of ryanodine receptors. We concluded that long-term coffee and caffeine diets in rats cause a significant disruption of the hippocampal neurons’ endoplasmic reticulum function. The diets evoke an increase in Ca2+ concentration in the neurons and an excessive release of Ca2+ in response to excitation. The latter can lead to increased excitability of neurons and their further death from excessive Ca2+ levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.