This paper investigates the post-hoc calibration of confidence for “exploratory” machine learning classification problems. The difficulty in these problems stems from the continuing desire to push the boundaries of which categories have enough examples to generalize from when curating datasets, and confusion regarding the validity of those categories. We argue that for such problems the “one-versus-all” approach (top-label calibration) must be used rather than the “calibrate-the-full-response-matrix” approach advocated elsewhere in the literature. We introduce and test four new algorithms designed to handle the idiosyncrasies of category-specific confidence estimation using only the test set and the final model. Chief among these methods is the use of kernel density ratios for confidence calibration including a novel algorithm for choosing the bandwidth. We test our claims and explore the limits of calibration on a bioinformatics application (PhANNs) as well as the classic MNIST benchmark. Finally, our analysis argues that post-hoc calibration should always be performed, may be performed using only the test dataset, and should be sanity-checked visually.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.