Limb-girdle muscular dystrophies (LGMDs) are a group of inherited diseases whose genetic etiology has yet to be elucidated. The autosomal recessive forms (LGMD2) constitute a genetically heterogeneous group with LGMD2A mapping to chromosome 15q15.1-q21.1. The gene encoding the muscle-specific calcium-activated neutral protease 3 (CANP3) large subunit is located in this region. This cysteine protease belongs to the family of intracellular calpains. Fifteen nonsense, splice site, frameshift, or missense calpain mutations cosegregate with the disease in LGMD2A families, six of which were found within La Réunion island patients. A digenic inheritance model is proposed to account for the unexpected presence of multiple independent mutations in this small inbred population. Finally, these results demonstrate an enzymatic rather than a structural protein defect causing a muscular dystrophy, a defect that may have regulatory consequences, perhaps in signal transduction.
Ullrich's congenital muscular dystrophy (UCMD) is an autosomal recessive myopathy characterised by neonatal muscle weakness, proximal joint contractures and distal hyperlaxity. Mutations in the COL6A1, COL6A2 (21 q22.3) and COL6A3 (2 q37) genes, encoding the alpha 1, alpha 2 and alpha 3 chains of collagen VI, respectively, have been recently identified as responsible for UCMD in a total of 9 families. We investigated in detail the clinical and morphological phenotype of 15 UCMD patients from 11 consanguineous families showing potential linkage either to 21 q22.3 (6 families) or to 2 q37 (5 families). Collagen VI deficiency was confirmed on muscle biopsies or skin fibroblasts in 8 families. Although all patients shared a common phenotype, a great variability in severity was observed. Collagen VI deficiency in muscle or cultured fibroblasts was complete in the severe cases and partial in the milder ones, which suggests a correlation between the degree of collagen VI deficiency and the clinical severity in UCMD. No significant phenotypical differences were found between the families linked to each of the 2 loci, which confirms UCMD as a unique entity with underlying genetic heterogeneity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.